Monday Lecture 1 Welfare Economics

August 6, 2012

An exchange economy

- There are ℓ commodities indexed $h = 1, ..., \ell$. The commodity space is $X = \mathbb{R}^{\ell}$.
- There are m agents (consumers), indexed i = 1, ..., m, with consumption set X, a utility function U_i: X → R and initial endowment of commodities e_i ∈ X.
- The *m*-tuple $\mathcal{E} = \{(U_i, \mathbf{e}_i)\}_{i=1}^m$ is called an **exchange economy**.
- An allocation is an array $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_m) \in X^m$.
- An allocation $\mathbf{x} \in X^m$ is **attainable** if

$$\sum_{i=1}^m \mathbf{x}_i = \sum_{i=1}^m \mathbf{e}_i.$$

Welfare Economic

Walrasian equilibrium

• A Walrasian equilibrium consists of an attainable allocation \mathbf{x}^* and a price vector $\mathbf{p}^* \neq 0$ such that, for every i = 1, ..., m, \mathbf{x}_i^* maximizes U_i on the budget set

$$B_i(\mathbf{p}^*) = \{\mathbf{x}_i \in X_i : \mathbf{p}^* \cdot \mathbf{x}_i \leq 0\}.$$

- We call \mathbf{x}^* a Walras allocation if $(\mathbf{x}^*, \mathbf{p}^*)$ is a Walrasian equilibrium, for some price vector $\mathbf{p}^* \neq 0$.
- An attainable allocation \mathbf{x} is said to be **weakly Pareto efficient** if there does not exist an attainable allocation \mathbf{y} such that $U_i(\mathbf{y}_i) > U_i(\mathbf{x}_i)$, for every i = 1, ..., m.
- An attainable allocation x is said to be (strongly) Pareto efficient if there does not exist an attainable allocation y such that $U_i(y_i) \geq U_i(x_i)$, for every i = 1, ..., m, and $U_i(y_i) > U_i(x_i)$ for at least one i.

First Theorem of Welfare Economics

Theorem (First Theorem of Welfare Economics)

A Walras allocation is weakly Pareto efficient.

Proof.

Let (\mathbf{x}, \mathbf{p}) be an equilibrium and suppose, contrary to what we want to prove, that $\mathbf{\hat{x}}$ is attainable and is strictly preferred to \mathbf{x} by every agent i. Then $\mathbf{p} \cdot \mathbf{\hat{x}}_i > \mathbf{p} \cdot \mathbf{e}_i$ for every i, so $\sum_i \mathbf{p} \cdot \mathbf{\hat{x}}_i > \sum_i \mathbf{p} \cdot \mathbf{e}_i$, contradicting $\sum_i \mathbf{\hat{x}}_i = \sum_i \mathbf{e}_i$.

Example

As an example of an equilibrium that is weakly but not strongly Pareto efficient, use the Edgeworth Box with "thick" indifference curves.

First Theorem continued

• Agent i is **locally non-satiable** if, for any point \mathbf{x}_i in the consumption set X_i and any $\varepsilon > 0$ there is a consumption bundle $\mathbf{x}_i' \in X_i$ such that $\|\mathbf{x}_i' - \mathbf{x}_i\| < \varepsilon$, $\mathbf{x}_i' \gg \mathbf{x}_i$, and $U_i(\mathbf{x}_i') > U_i(\mathbf{x}_i)$.

Theorem (First Theorem of Welfare Economics)

A Walras allocation \mathbf{x} is strongly Pareto efficient if every agent is locally non-satiable.

Proof.

Let (\mathbf{x}, \mathbf{p}) be an equilibrium and suppose, contrary to what we want to prove, that \mathbf{x} is attainable and is weakly preferred to \mathbf{x} by every agent i and strictly preferred by some agent i. Local non-satiability implies that $\mathbf{p} \cdot \mathbf{x}_i \geq \mathbf{p} \cdot \mathbf{e}_i$ for every i and the inequality is strict for some i, so $\sum_i \mathbf{p} \cdot \mathbf{x}_i > \sum_i \mathbf{p} \cdot \mathbf{e}_i$, contradicting $\sum_i \mathbf{x}_i = \sum_i \mathbf{e}_i$.

Second Theorem of Welfare Economics

• An attainable allocation x can be decentralized if there exists a price vector $\mathbf{p} \neq 0$ such that, for every i = 1, ..., m,

$$U_i(\mathbf{y}_i) > U_i(\mathbf{x}_i) \Longrightarrow \mathbf{p} \cdot \mathbf{y}_i > \mathbf{p} \cdot \mathbf{x}_i.$$

• Let $P_i(\mathbf{x}_i)$ denote the set of points that is preferred to \mathbf{x}_i by agent i, that is,

$$P_i(\mathbf{x}_i) = \{\mathbf{y}_i \in X : U_i(\mathbf{y}_i) > U_i(\mathbf{x}_i)\},\$$

for every i = 1, ..., m.

Theorem (Second Theorem of Welfare Economics)

Suppose that \mathbf{x}^* is a weakly efficient allocation and suppose that U_i is continuous and l.n.s. and $P_i(\mathbf{x})$ is convex for every i=1,...,m. Then \mathbf{x}^* can be decentralized using a price vector $\mathbf{p}^* \neq 0$.

Proof of Second Theorem

- Let $Z_i = P_i(\mathbf{x}_i^*) \{\mathbf{x}_i^*\}$ for each i and let $Z = \sum_i Z_i$. Then
 - (a) Z is nonempty because U_i is l.n.s.,
 - (b) Z_i is open because U_i is continuous, and
 - (c) Z_i is convex because $P_i(\mathbf{x}_i^*)$ is convex.
- We claim that $0 \notin Z$ because \mathbf{x}^* is weakly Pareto efficient. If not, there exist vectors $\mathbf{z}_i \in Z_i$ such that $\sum_i \mathbf{z}_i = 0$. Then $\mathbf{y} = \mathbf{x}^* + \mathbf{z}$ is an attainable allocation and $U_i(\mathbf{y}_i) > U_i(\mathbf{x}_i^*)$ for every i, a contradiction.

Theorem (Minkowski lemma)

Let S be a nonempty, open and convex set and suppose $0 \notin S$. Then there exists a vector $\mathbf{p} \in \mathbf{R}^{\ell}$ such that $\mathbf{p} \neq 0$ and $\mathbf{p} \cdot \mathbf{x} > 0$ for any $\mathbf{x} \in S$.

Proof of Second Theorem continued

- By the Minkowski lemma, there exists a vector $\mathbf{p}^* \neq 0$ such that $\mathbf{p}^* \cdot z > 0$ for any $z \in Z$.
- The continuity of U_i implies that $0 \in \overline{Z}_i$ for all i.
- This inequality implies that $\mathbf{p}^* \cdot z_i > 0$ for any $z_i \in Z_i$, as required.
- This shows that \mathbf{x}^* is decentralized using the price vector \mathbf{p}^* .

An economy with risk

- Assume a finite number of states of nature, s=1,...,S, with common probability distribution $\pi(s)$.
- Agent *i* has a vNM utility function $U_i: X \to \mathbf{R}$.
- The **commodity space** is $X^S = \{\mathbf{x} : S \to X\}$, where $\mathbf{x}(s)$ denotes the bundle of contingent commodities delivered in state s. The **endowment** of agent i is $\mathbf{e}_i \in X^S$.
- ullet An exchange economy is defined by the \emph{m} -tuple $\mathcal{E} = \{(\emph{U}_i, \mathbf{e}_i)\}_{i=1}^m.$
- An allocation for the economy is now an m-tuple $\mathbf{x} = \{\mathbf{x}_i\}_{i=1}^m$ such that $\mathbf{x}_i \in X^S$ for each i. The allocation \mathbf{x} is attainable if $\sum_{i=1}^m \mathbf{x}_i = \sum_{i=1}^m \mathbf{e}_i$.
- A Walrasian equilibrium consists of an attainable allocation \mathbf{x}^* and a price vector $\mathbf{p}^* \in X^S$ such that, for every i=1,...,m, the consumption bundle \mathbf{x}_i^* maximizes $\sum_{s=1}^S \pi(s) U_i(\mathbf{x}_i(s))$ in the budget set

$$\mathcal{B}_i(\mathbf{p}^*) = \left\{ \mathbf{y}_i \in X^S : \mathbf{p}^* \cdot \mathbf{y}_i \leq \mathbf{p}^* \cdot \mathbf{e}_i \right\}.$$

Welfare Economics August 6, 2012 9 / 35

Arrow securities

- Securities are traded before the true state of nature is revealed.
- The ℓ goods are traded on spot markets after the true state is revealed.
- An Arrow security promises one unit of account in some state s and nothing in other states.
- We assume that there is a complete set of Arrow securities, one for each state s.
- Let z_{is} denote agent i's demand (positive or negative) for Arrow security s and let

$$\mathbf{z}_{i} = (z_{i1},...,z_{is},...,z_{iS})$$

denote the vector of security demands for agent i. The set of possible security demands is denoted by $Z \equiv \mathbf{R}^{S}$.

Allocations

- A security allocation is an *m*-tuple $z = (z_1, ..., z_i, ..., z_m) \in Z^m$. An allocation of contingent commodities is an m-tuple $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_i, ..., \mathbf{x}_m) \in (X^S)^m$, where \mathbf{x}_i is the vector of demands for contingent commodities for agent i.
- An allocation consists of an order pair $(\mathbf{x}, \mathbf{z}) \in (X^S)^m \times Z^m$, where x is an allocation of contingent commodities and z is the allocation of securities.
- An allocation (x, z) is attainable if

$$\sum_{i=1}^{m} \left(\mathbf{x}_i, \mathbf{z}_i \right) = \sum_{i=1}^{m} \left(\mathbf{e}_i, \mathbf{0} \right).$$

• Let let $\mathbf{q} = (q_1, ..., q_s, ..., q_s)$ q_s denote the vector of Arrow security prices, let $\mathbf{p}(s) \neq 0$ denote the vector of commodity prices in state s and let p = (p(1), ..., p(s), ...p(S)).

Equilibrium with Arrow securities

Definition

An equilibrium with Arrow securities consists of an attainable allocation $(\mathbf{x}^*, \mathbf{z}^*)$ and a **price system** $(\mathbf{p}^*, \mathbf{q}^*)$ such that, for each agent i, the ordered pair $(\mathbf{x}_{i}^{*}, \mathbf{z}_{i}^{*})$ maximizes

$$\sum_{s=1}^{S} \pi(s) U_i(\mathbf{x}_i(s))$$

subject to the budget constraints

$$\mathbf{q}^* \cdot \mathbf{z}_i \leq 0$$

and

$$\mathbf{p}^*(s) \cdot \mathbf{x}_i(s) \leq \mathbf{p}^*(s) \cdot \mathbf{e}_i(s) + z_{is}, \ \forall s.$$

Equivalence

Theorem

If $(\mathbf{x}^*, \mathbf{p}^*)$ is a Walrasian equilibrium, then $(\mathbf{x}^*, \mathbf{z}^*, \mathbf{p}^*, \mathbf{q}^*)$ is an equilibrium with Arrow securities, where $\mathbf{q}^* = (1,...,1)$ and \mathbf{z}_i^* is defined by

$$z_{is}^* = \mathbf{p}^*(s) \cdot (\mathbf{x}_i^*(s) - \mathbf{e}_i(s)), \ \forall s.$$

Conversely, if $(\mathbf{x}^*, \mathbf{z}^*, \mathbf{p}^*, \mathbf{q}^*)$ is an equilibrium with Arrow securities, then $(\mathbf{x}^*, \mathbf{p})$ is an equilibrium with complete markets, where \mathbf{p} is defined by

$$\mathbf{p}(s) = q_s \mathbf{p}^*(s), \ \forall s.$$

Proof of Arrow's Theorem

Suppose that $(\mathbf{x}^*, \mathbf{p}^*)$ is a Walrasian equilibrium and let \mathbf{z}^* and \mathbf{q}^* be defined by

$$q_s = 1$$

and

$$z_{is}^* = \mathbf{p}^*(s) \cdot (\mathbf{x}_i^*(s) - \mathbf{e}_i(s)),$$

for any s = 1, ..., S and i = 1, ..., m. We want to show that $(\mathbf{x}^*, \mathbf{z}^*, \mathbf{p}^*, \mathbf{q}^*)$ is an equilibrium with Arrow securities.

Step 1: Note that, for every state s,

$$\sum_{i=1}^m z_{is}^* = \sum_{i=1}^m \mathbf{p}^*(s) \cdot (\mathbf{x}_i^*(s) - \mathbf{e}_i(s)) = 0$$

because \mathbf{x}^* is attainable, so $\sum_{i=1}^m \mathbf{z}_i^* = 0$ and, hence, $(\mathbf{x}^*, \mathbf{z}^*)$ is attainable.

Proof continued

Step 2: For every agent i,

$$\mathbf{q}^* \cdot \mathbf{z}_i^* = \sum_{s=1}^{S} \mathbf{p}^*(s) \cdot (\mathbf{x}_i^*(s) - \mathbf{e}_i(s)) \leq 0,$$

since $\mathbf{x}_{i}^{*} \in B_{i}(\mathbf{p}^{*})$. Also, for every i,

$$\mathbf{p}^*(s) \cdot \mathbf{x}_i^*(s) \leq \mathbf{p}^*(s) \cdot \mathbf{e}_i(s) + z_{is}^*, \ \forall s.$$

Hence, $(\mathbf{x}_{i}^{*}, \mathbf{z}_{i}^{*})$ belongs to the budget set of agent i.

Step 3: Now suppose that $(\mathbf{x}_i, \mathbf{z}_i)$ belongs to the budget set of agent i. The budget constraints imply that

$$\sum_{s=1}^{S} \mathbf{p}^*(s) \cdot (\mathbf{x}_i(s) - \mathbf{e}_i(s)) \le \sum_{s=1}^{S} z_{is} \le 0,$$

so \mathbf{x}_i belongs to the Walrasian budget set $B_i(\mathbf{p}^*)$. Since \mathbf{x}_i^* maximizes expected utility over the budget set $B_i(\mathbf{p}^*)$, $(\mathbf{x}_i^*, \mathbf{z}_i^*)$ must maximize expected utility over the budget set in the equilibrium with Arrow securities.

Proof continued

Step 4: Suppose that $(\mathbf{x}^*, \mathbf{z}^*, \mathbf{p}^*, \mathbf{q}^*)$ is an equilibrium with Arrow securities. Define a price vector \mathbf{p} for a Walrasian equilibrium by putting

$$\mathbf{p}(s) = q_s^* \mathbf{p}^*(s), \ \forall s.$$

Clearly, \mathbf{x}^* is attainable because $(\mathbf{x}^*, \mathbf{z}^*)$ is attainable. Also, \mathbf{x}_i^* belongs to the budget set $B_i(\mathbf{p})$ because

$$\mathbf{p} \cdot (\mathbf{x}_{i}^{*} - \mathbf{e}_{i}) = \sum_{s=1}^{S} \mathbf{p}(s) \cdot (\mathbf{x}_{i}^{*}(s) - \mathbf{e}_{i}(s))$$

$$= \sum_{s=1}^{S} q_{s}^{*} \mathbf{p}^{*}(s) \cdot (\mathbf{x}_{i}^{*}(s) - \mathbf{e}_{i}(s))$$

$$\leq \sum_{s=1}^{S} q_{s}^{*} z_{is}^{*} \leq 0$$

from the budget constraints of the equilibrium with Arrow securities.

Welfare Economics August 6, 2012 16 / 35

Proof continued

Step 5: Now suppose that \mathbf{x}_i belongs to $B_i(\mathbf{p})$. Define \mathbf{z}_i by putting

$$z_{is} = \mathbf{p}^*(s) \cdot (\mathbf{x}_i(s) - \mathbf{e}_i(s)), \ \forall s.$$

Then

$$\mathbf{q}^* \cdot \mathbf{z}_i = \sum_{s=1}^{S} q_s^* \mathbf{p}^*(s) \cdot (\mathbf{x}_i^*(s) - \mathbf{e}_i(s))$$

$$= \sum_{s=1}^{S} \mathbf{p}(s) \cdot (\mathbf{x}_i^*(s) - \mathbf{e}_i(s))$$

$$= \mathbf{p} \cdot (\mathbf{x}_i^* - \mathbf{e}_i) \le 0,$$

so $(\mathbf{x}_i, \mathbf{z}_i)$ belongs to the budget set of the equilibrium with Arrow securities. Since $(\mathbf{x}_i^*, \mathbf{z}_i^*)$ maximizes expected utility in the budget of the equilibrium with Arrow securities, agent i must prefer \mathbf{x}_{i}^{*} to \mathbf{x}_{i} . Thus, \mathbf{x}_{i}^{*} is optimal in the budget set $B_i(\mathbf{p})$. This completes the proof that $(\mathbf{x}^*, \mathbf{p})$ is a Walrasian equilibrium.

Necessary conditions for optimal risk sharing

• If $U_i(x_{is})$ is C^1 , a necessary first-order condition for optimality is that

$$\pi_{s}U_{i}'(x_{is}^{*})=\lambda_{i}p_{s}^{*}$$

for every state s = 1, ..., S.

• Eliminating λ_i we get

$$\frac{\pi_{s}U'_{i}(x_{is}^{*})}{\pi_{s'}U'_{i}(x_{is'}^{*})} = \frac{\lambda_{i}p_{s'}^{*}}{\lambda_{i}p_{s'}^{*}} = \frac{p_{s'}^{*}}{p_{s'}^{*}}$$

for any states s, s'.

ullet This immediately implies that, for any pair of agents i and j,

$$\frac{\pi_{s} U'_{i} \left(x_{is}^{*}\right)}{\pi_{s'} U'_{i} \left(x_{is'}^{*}\right)} = \frac{\pi_{s} U'_{j} \left(x_{js}^{*}\right)}{\pi_{s'} U'_{j} \left(x_{js'}^{*}\right)}.$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

The Borch conditions

Canceling probabilities on both sides, we have the Borch conditions:

$$\frac{U'_{i}(x_{is}^{*})}{U'_{i}(x_{is'}^{*})} = \frac{U'_{j}(x_{js}^{*})}{U'_{j}(x_{js'}^{*})}.$$

- The Borch conditions are the necessary and sufficient conditions for efficient risk sharing when the utility functions $u_i(\mathbf{x}_i)$ are concave and continuously differentiable.
- They imply the necessity of **coinsurance**, that is, every agent's consumptions moves in the same direction between states.
- If utility functions are strictly concave, coinsurance has a striking implication: efficient risk sharing implies that each agent's consumption is a function of the total endowment.

Demand functions

Let $\mathcal{E} = \{(X_i, \mathbf{e}_i, U_i)\}$ be an exchange economy satisfying the following properties:

- $X_i = \mathbf{R}_+^{\ell}$ and $\mathbf{e}_i \gg 0$ for any i = 1, ..., m.
- $U_i: \mathbf{R}_+^\ell \to \mathbf{R}$ is increasing, continuous and strictly quasi-concave.
- Let $P = \{ \mathbf{p} \in \mathbf{R}_+^{\ell} : p_h \gg 0, p_{\ell} = 1 \}$ and let $\bar{P} = clP$ denote the closure of P. For any $\mathbf{p} \in P$, let $B_i(\mathbf{p}, \mathbf{p} \cdot \mathbf{e}_i) = \{ \mathbf{x}_i \in X_i : \mathbf{p} \cdot \mathbf{x}_i < \mathbf{p} \cdot \mathbf{e}_i \}$ and let

$$\xi_i(\mathbf{p}) = \arg\max \left\{ U_i(\mathbf{x}_i) : \mathbf{x}_i \in B_i(\mathbf{p}, \mathbf{p} \cdot \mathbf{e}_i) \right\}.$$

• $\xi_i(\mathbf{p})$ is a singleton for any $\mathbf{p} \in P$ and $\xi_i : P \to \mathbf{R}_+^{\ell}$ is a well-defined function. Moreover, ξ_i is continuous on P and, for any sequence $\{\mathbf{p}^q\}$ in P converging to $\mathbf{p}^0 \in \bar{P} \setminus P$, $\|\xi_i(\mathbf{p}^q)\| \to \infty$.

Excess demand functions

• Define the individual excess demand function $z_i: P \to \mathbf{R}^{\ell}$ for agent i by putting

$$z_i(\mathbf{p}) = \xi_i(\mathbf{p}) - \mathbf{e}_i,$$

for every $\mathbf{p} \in P$ and define the **aggregate excess demand function** for \mathcal{E} , denoted by $\mathbf{z} : P \to \mathbf{R}^{\ell}$, by putting

$$z(\mathbf{p}) = \sum_{i=1}^{m} z_i(\mathbf{p}),$$

for every $\mathbf{p} \in P$.

• Under the maintained assumptions, $\mathbf{z}: P \to \mathbf{R}^\ell$ is well defined for the pure exchange economy \mathcal{E} . The function \mathbf{z} is continuous and satisfies the boundary condition

$$\|\mathbf{z}(\mathbf{p}^q)\| \to \infty$$

for any sequence $\{\mathbf{p}^q\}$ in P such that $\mathbf{p}^q \to \mathbf{p}^0 \in \bar{P} \backslash P$.

◆ロト ◆個ト ◆量ト ◆量ト ■ 約

Regular economies

Let $U \subset \mathbf{R}^n$ be an open set, let $f: U \to \mathbf{R}^n$ be a function, and suppose that $\mathbf{x} \in U$ is a solution of the equation

$$f(\mathbf{x}) = 0.$$

Then we say that \mathbf{x} is **locally unique** (or a locally unique solution) if there is some open set $V \subset U$ such that $\mathbf{x} \in V$ and there does not exist $\mathbf{y} \neq \mathbf{x}$ in V such that $f(\mathbf{y}) = 0$. The following theorem is often used to establish local uniqueness.

Theorem

Inverse Function Theorem. Let $U \subset \mathbf{R}^n$ be open and $f: U \to \mathbf{R}^n$ be C^r , $1 \le r \le \infty$, at \mathbf{x} . If the matrix of derivatives $\nabla f(\mathbf{x})$ is nonsingular (invertible), then there is an open set $V \subset \mathbf{R}^n$ such that $f(\mathbf{x}) \in V$ and a C^r function $f^{-1}: V \to \mathbf{R}^n$ such that $f^{-1}(f(\mathbf{y})) = \mathbf{y}$ on a neighborhood of \mathbf{x} . Moreover,

$$\nabla f^{-1}(f(\mathbf{x})) = [\nabla f(\mathbf{x})]^{-1}$$
.

A C^1 inverse at $f(\mathbf{x})$ can exist only if $\nabla f(\mathbf{x})$ is nonsingular.

() Welfare Economics August 6, 2012

Regularity

• We assume that $z: P \to \mathbf{R}^{\ell}$ is a member of the class C^r for $1 \le r \le \infty$, normalize the price vector by putting $p_{\ell} = 1$ and denote the vector of excess demands of the first $\ell-1$ goods by

$$\hat{z}(\mathbf{p}) = (z_1(\mathbf{p}), ..., z_{\ell-1}(\mathbf{p}))$$
 .

• The excess demand function z satisfies Walras' law, that is,

$$\mathbf{p}\cdot z(\mathbf{p})=0,$$

for any $\mathbf{p} \in P$. If all but one market clears, the remaining market must clear also.

• A normalized price vector $\mathbf{p}=(p_1,...,p_{\ell-1},1)$ constitutes a **Walrasian equilibrium** if and only if it solves the system of $\ell-1$ equations in $\ell-1$ unknowns

$$\hat{z}(\mathbf{p})=0.$$

Local uniqueness

Definition

An equilibrium price vector $\mathbf{p}=(p_1,...,p_{\ell-1},1)$ is **regular** if the $(\ell-1)\times(\ell-1)$ matrix of price effects $\nabla\hat{z}(\mathbf{p})$ is non-singular, that is, has rank $\ell-1$. If every normalized equilibrium price vector is regular we say that the economy is **regular**.

Theorem

Any regular (normalized) equilibrium price vector $\mathbf{p}=(p_1,...,p_{\ell-1},1)$ is **locally unique**. That is, for some $\varepsilon>0$ and any $\mathbf{p}'\neq\mathbf{p}$ such that $p'_\ell=p_\ell=1$ and $\|\mathbf{p}'-\mathbf{p}\|<\varepsilon$, $z(\mathbf{p}')\neq0$. Moreover, if the economy is regular, then the number of normalized equilibrium price vectors is finite.

Genericity I

A property is said to be **generic** if it holds for all parameters outside a negligible set, for example, a set of measure zero. We want to show that regularity is such a generic property.

Theorem (Transversality)

Suppose that $f: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}^n$ If the $n \times (m+p)$ matrix $\nabla f(\mathbf{x}; \mathbf{q})$ has rank n whenever $f(\mathbf{x}, \mathbf{q}) = 0$ then for almost every \mathbf{q} , the $n \times m$ matrix $\nabla_{\mathbf{x}} f(\mathbf{x}; \mathbf{q})$ has rank n whenever $f(\mathbf{x}; \mathbf{q}) = 0$.

Write the excess demand function $\hat{z}(\mathbf{p}; \mathbf{e})$ to show the dependence on the vector of endowments $\mathbf{e} = (\mathbf{e}_1, ..., \mathbf{e}_m)$.

Theorem (Rank Condition)

For any **p** and **e**, the rank of $\nabla_{\mathbf{e}}\hat{\mathbf{z}}(\mathbf{p};\mathbf{e})$ is $\ell-1$.

Genericity II

The next proposition follows directly from the Transversality Theorem and the Rank Condition.

Theorem

For almost every vector of initial endowments $\mathbf{e} = (\mathbf{e}_1, ..., \mathbf{e}_m)$, the economy defined by $\{(u_i, \mathbf{e}_i)\}_{i=1}^m$ is regular.

Asset economies

- There two dates t = 0, 1 and a finite number of states s = 0, 1, ..., S. The state of nature is unknown at date 0 but has a common probability distribution $\pi(s)$; the true state is revealed at date 1.
- There are $\ell+1$ goods, indexed by $h=0,...,\ell$ so the commodity space is $\mathbf{R}^{(\ell+1)(S+1)}$.
- There are m+1 economic agents, indexed by i=0,...,m, characterized by the consumption set $\mathbf{R}_{+}^{(\ell+1)(S+1)}$, an endowment $\mathbf{e}_i \in \mathbf{R}_{\perp}^{(\ell+1)(S+1)}$ and a utility function $U_i : \mathbf{R}_{\perp}^{(\ell+1)(S+1)} \to \mathbf{R}$.
- There is a finite set of assets, indexed by k = 0, 1, ..., K, all in zero net supply.
- Asset k is defined by a payoff vector $\mathbf{a}_k = (a_{k0}, ..., a_{kS})$, where a_{ks} is the return in terms of the numeraire good h = 0 in state s.
- The payoff matrix $\mathbf{A} = [a_{ks}]_{(K+1)\times(S+1)}$ characterizes the possibilities of trade between periods and states.

Allocations and prices

- An allocation for the economy is an array $(\mathbf{x}, \mathbf{z}) = \{(\mathbf{x}_i, \mathbf{z}_i)\}_{i=1}^m$ such that $\mathbf{x}_i \in \mathbf{R}_+^{(\ell+1)(S+1)}$ and $\mathbf{z}_i \in \mathbf{R}_+^K$ for each i=1,...,m.
- An allocation (x, z) is attainable if

$$\sum_{i=1}^m \mathbf{x}_i = \sum_{i=1}^m \mathbf{e}_i$$
 and $\sum_{i=1}^m \mathbf{z}_i = \mathbf{0}$.

- A **price system** consists of a pair of price vectors (\mathbf{p}, \mathbf{q}) , where $\mathbf{p} \in \mathbf{R}^{(\ell+1)(S+1)}$ and $\mathbf{q} \in \mathbf{R}^K$.
- Assume free disposal, so that $(\mathbf{p}, \mathbf{q}) \geq (\mathbf{0}, \mathbf{0})$, w.l.o.g.
- Partition the consumption bundle \mathbf{x}_i for agent i into the sub-bundles $\mathbf{x}_i(s)$ at states s=0,1,...,S, where s=0 denotes the first date, and write $\mathbf{x}_i=(\mathbf{x}_i(0),\mathbf{x}_i(1),...,\mathbf{x}_i(S))$.
- Similarly, partition the price system \mathbf{p} into the sub-vectors $\mathbf{p}(s)$, for s = 0, 1, ..., S, and write $\mathbf{p} = (\mathbf{p}(0), ..., \mathbf{p}(S))$.

Equilibrium

Definition

An **equilibrium** for the economy consists of an attainable allocation $(\mathbf{x}^*, \mathbf{z}^*)$ and a price system (\mathbf{p}, \mathbf{q}) such that, for every agent i = 1, ..., m,

 $(\mathbf{x}_{i}^{*}, \mathbf{z}_{i}^{*})$ maximizes $U_{i}(\mathbf{x}_{i})$ subject to the constraints

$$\mathbf{q} \cdot \mathbf{z}_i \leq 0$$

$$\mathbf{p}\left(s\right)\cdot\mathbf{x}_{i}\left(s\right)\leq\mathbf{p}\left(s\right)\cdot\mathbf{e}_{i}\left(s\right)+\sum_{k=1}^{K}z_{k}a_{ks},$$

for s = 0, 1, ..., S.

Assumptions

- (A.1) U_i is continuous and quasi-concave on $\mathbf{R}_{\perp}^{(\ell+1)(S+1)}$ and the range of U_i can be extended to $\mathbf{R} \cup \{-\infty\}$.
- (A.2) $e_i \gg 0$.
- (A.3) U_i is increasing in the numeraire good at every state s = 1, ..., S at date 1.
- (A.4) Free assets give rise to arbitrage: there exists a portfolio $\mathbf{z} \in \mathbf{R}^{K+1}$ such that 2A > 0.
- (D.1) A has full row rank.
- (D.2) U_i is C^2 , $DU_i \gg \mathbf{0}$ and D^2U_i is negative definite on $\mathbf{R}_{++}^{(\ell+1)(S+1)}$.
- (D.3) The closure of the indifference curves of U_i do not intersect the boundary of $\mathbf{R}^{(\ell+1)(S+1)}$.
 - (S) The asset market is incomplete: K < S.
- (CS) Every set of K+1 columns of **A** are linearly independent and there exists a portfolio $\mathbf{\hat{z}}$ such that $\mathbf{a}(s) \cdot \mathbf{\hat{z}} \neq 0$, for all states s = 1, ..., S.

Spot market equilibrium relative to z^

Theorem

An equilibrium exists if (A.1) through (A.4) are satisfied.

Definition

Let 2 be a fixed but arbitrary profile of assets satisfying

$$\sum_{i=1}^m \mathbf{\hat{z}}_i = \mathbf{0}$$

and define a **spot market equilibrium relative to 2** to be an attainable allocation $(\mathbf{x}, \mathbf{2})$ and a price system $(\mathbf{\hat{p}}, \mathbf{\hat{q}})$ such that, for every agent i = 1, ..., m, \mathbf{x}_i maximizes $U_i(\mathbf{x}_i)$ subject to the constraints

$$\mathbf{\hat{q}} \cdot \mathbf{z}_i \leq 0$$

$$\mathbf{\hat{p}}\left(s\right)\cdot\mathbf{x}_{i}\left(s\right)\leq\mathbf{\hat{p}}\left(s\right)\cdot\mathbf{e}_{i}\left(s\right)+\sum_{k=1}^{K}z_{ik}a_{ks},$$

The space of economies

- Let $\mathcal{E} \subset \mathbf{R}_{++}^{(S+1)(\ell+1)(m+1)}$ be an open set of endowments of each of the m agents and assume that \mathcal{E} is bounded and that the closure of E does not intersect the boundary of $\mathbf{R}_{++}^{(S+1)(\ell+1)(m+1)}$.
- $\mathcal U$ is assumed to be a finite dimensional manifold of utility functions satisfying the assumptions previously assumed and sufficiently rich in perturbations so that, if $U_i \in \mathcal U$, then $U_i + \varepsilon f \in \mathcal U$ for $\varepsilon > 0$ sufficiently small, where f is any smooth function.
- ullet The space of economies is identified with the parameters in $\mathcal{E} imes \mathcal{U}^m$.
- A set of economies $D \subset \mathcal{E} \times \mathcal{U}^m$ is said to be **generic** if it is an open dense subset of $\mathcal{E} \times \mathcal{U}^m$ with a null complement. (A null set is here interpreted to be a set of measure zero).

Regularity

Theorem

If (A1) through (A.4) and (D.1) through (D.3) are satisfied, then for any choice of utilities $\mathbf{U} \in \mathcal{U}$, there is a generic set $E\left(\mathbf{U}\right)$ of endowments in \mathcal{E} such that for every economy (\mathbf{e},\mathbf{U}) with $\mathbf{e} \in E\left(\mathbf{U}\right)$, the set of competitive equilibria is a continuously differentiable function of the endowment allocation \mathbf{e} .

Theorem

If (A1) through (A.4) and (D.1) through (D.3) are satisfied, then there is a generic set of economies $D \subset \mathcal{E} \times \mathcal{U}^m$ on which

(i) the set of competitive equilibria is finite and is a continuously differentiable function of the endowment and utility assignment (e, U); (ii) the spot market competitive equilibrium corresponding to any competitive portfolio allocation is, locally, a continuously differentiable function of the portfolio allocation z.

Constrained inefficiency

• An attainable allocation (\mathbf{x}, \mathbf{z}) is **Pareto efficient** if there does not exist an attainable allocation $(\mathbf{x}', \mathbf{z}')$ such that $U_i(\mathbf{x}'_i) \geq U_i(\mathbf{x}_i)$ for i = 1, ..., m and the inequality is strict for some i.

Proposition

- If the asset market is incomplete (S) and if (A.1) through (A.4) and (D.1) through (D.3) are satisfied, then for any economy $(\mathbf{e}, \mathbf{U}) \in D$, a generic set, all competitive equilibria are Pareto inefficient.
- An equilibrium allocation (\mathbf{x}^*, z^*) is said to be **constrained efficient** if there does not exist a feasible portfolio profile $\mathbf{\hat{z}}$ and spot market equilibrium relative to $\mathbf{\hat{z}}$, say $(\mathbf{\hat{x}}, \mathbf{\hat{z}}, \mathbf{\hat{p}}, \mathbf{\hat{q}})$ such that $U_i(\mathbf{\hat{x}}_i) \geq U_i(\mathbf{x}_i^*)$ for i = 1, ..., m and the inequality is strict for some i.

A generic result

Theorem

Suppose that $0 < 2\ell \le m < S\ell$. If the asset market is incomplete (S) and if (A.1) through (A.4), (D.1) through (D.3) and (CS) are satisfied, then for any economy $(\mathbf{e}, \mathbf{U}) \in D$, a generic set all competitive equilibria are constrained inefficient as long as there are at least two assets, $K+1 \ge 2$. If $K+1 \ge 3$, this remains true even if the reallocation of assets must satisfy the asset budget constraint for each individual at the equilibrium asset prices.