Monday Lecture 2 Optimal Intermediation

August 6, 2012

Intermediation and crises

- Bryant (1980) and Diamond and Dybvig (1983) made four contributions:
 - (i) A maturity structure of bank assets, in which less liquid assets earn higher returns
 - (ii) A theory of **liquidity preference**, modeled as uncertainty about the timing of consumption
 - (iii) The representation of a bank as an intermediary that provides insurance to depositors against liquidity (preference) shocks
 - (iv) An explanation of bank runs by depositors
- In the case of Diamond and Dybvig (1983), the bank runs are modeled as the result of **self-fulfilling prophecies or panics**; in the case of Bryant (1980), they are modeled as the result of **fundamentals**

The basic setup

- There are three dates, t = 0, 1, 2. At each date there is an all-purpose consumption/investment good
- There are two types of assets:
 - the liquid asset (also called the *short asset*) is a constant returns to scale technology that takes one unit of the good at date t and converts it into one unit of the good at date t + 1, where t = 0, 1;
 - by the illiquid asset (also called the *long asset*) is a constant returns to scale technology that takes one unit of the good at date 0 and transforms it into R>1 units of the good at date 2; if the long asset is liquidated prematurely at date 1 then it pays 0< r<1 units of the good for each unit invested
- There is a large number of ex ante identical economic agents. Each consumer has an endowment of one unit of the good at date 0 and nothing at the later dates

Consumers

• With probability λ an agent is an **early consumer**, who only values consumption at date 1; with probability $(1-\lambda)$ he is a **late consumer** who only values consumption at date 2. The agent's (random) utility function $u(c_1, c_2)$ is defined by

$$u(c_1, c_2) = \left\{ egin{array}{ll} U(c_1) & ext{w.pr. } \lambda \ U(c_2) & ext{w.pr. } 1 - \lambda, \end{array}
ight.$$

where $c_t \geq 0$ denotes consumption at date t=1,2 and $U(\cdot)$ is a neoclassical utility function (increasing, strictly concave, twice continuously differentiable)

- "Law of large numbers": λ is the fraction of early consumers; $1-\lambda$ is the fraction of late consumers
- Uncertainty about the agent's type gives rise to liquidity preference

◆ロト ◆団ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

Market equilibrium

- We assume that there exists a market on which an agent can sell his holding of the long asset at date 1 after he discovers his true type
- At date 0, a consumer invests in a portfolio (x, y) subject to the budget constraint

$$x + y \le 1$$

 At date 1 he discovers his type. An early consumer liquidates his portfolio and consume the proceeds:

$$c_1 = y + Px$$

where P is the price of the long asset

• A late consumer rebalance his portfolio (w.l.o.g., we assume he holds only the long asset):

$$c_2 = \left(x + \frac{y}{P}\right)R$$

• At date 0, the consumer chooses (x, y) to maximize expected utility

$$\lambda U(y + Px) + (1 - \lambda) U\left[\left(x + \frac{y}{P}\right)R\right]$$

Optimal Intermediation August 6, 2012 5 / 33

The value of the market

• In equilibrium, the price of the long asset must be P=1, so the consumer's consumption is

$$c_1 = x + Py = x + y = 1$$

at date 1 and

$$c_2 = \left(x + \frac{y}{P}\right)R = (x + y)R = R$$

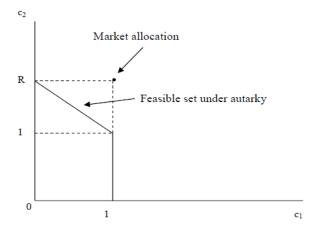
at date 2

Then the equilibrium expected utility is

$$\lambda U(1) + (1 - \lambda)U(R)$$

• In autarky, consumption is (y, y + R(1 - y)) for $0 \le y \le 1$. The market allocation $(c_1, c_2) = (1, R)$ dominates every feasible autarkic allocation

Figure 1: Market allocation and feasible set under autarky



The efficient solution

- The market solution is inefficient because it does not allow trades contingent on the agent's type, i.e., insurance against liquidity shocks. We represent the efficient allocation as the solution to a planner's problem
- Feasibility:

$$x + y = 1 \tag{1}$$

$$\lambda c_1 \leq y$$
 (2)

$$\lambda c_1 + (1 - \lambda)c_2 \le Rx + y \tag{3}$$

• The planner's objective is to choose the investment portfolio (x,y) and the consumption allocation (c_1,c_2) to maximize the typical investor's expected utility

$$\lambda U(c_1) + (1 - \lambda) U(c_2)$$
,

subject to the various feasibility conditions (1) - (3)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへで

Solving the planner's problem

• W.I.o.g., we can assume the short asset is used to provide consumption at date 1 and the long asset is used to provide consumption at date 2:

$$c_1 = rac{y}{\lambda}; \ c_2 = rac{Rx}{1-\lambda}$$

 Substituting these expressions for consumption into the objective function the planner's problem is

$$\max_{0 \le y \le 1} \left\{ \lambda U\left(\frac{y}{\lambda}\right) + (1 - \lambda) U\left(\frac{R(1 - y)}{1 - \lambda}\right) \right\} \tag{4}$$

A necessary condition for an interior optimum is

$$U'(c_1) = RU'(c_2)R$$
 (5)

The inefficiency of the market solution

 The feasible allocations for the planner's problem are defined by the equation

$$(c_1,c_2)=\left(rac{y}{\lambda},rac{R(1-y)}{(1-\lambda)}
ight)$$

• The market allocation corresponds to putting $y = \lambda$:

$$(c_1,c_2)=\left(rac{y}{\lambda},rac{R(1-y)}{(1-\lambda)}
ight)=(1,R)$$

The first-order condition for optimality (5) at this point is

$$U'(1) = U'(R)R$$

This will be satisfied in the special case of log utility function, but not in general

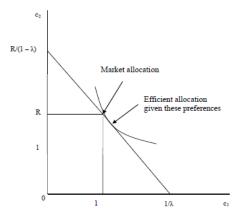
Suppose that

$$U(c) = rac{1}{1-\sigma}c^{1-\sigma}$$

Then $\sigma > 1$ implies that (c_1, c_2) satisfies $c_1 > 1$ and $c_2 < R$ and, conversely, $\sigma < 1$ implies that $c_1 < 1$ and $c_2 > R_{\sigma}$

() Optimal Intermediation August 6, 2012 10 / 33

Figure 2: Inefficiency of the market solution



Complete markets

• A consumer can purchase date-t goods at a price q_t at date 0, for delivery conditional on being type t=1,2. The consumer's budget constraint is

$$q_1\lambda c_1 + q_2p(1-\lambda)c_2 \le 1, \tag{6}$$

where $p = \frac{P}{R}$ is price of date-2 goods in terms of date-1 goods

• The individual chooses (c_1, c_2) to maximize $\lambda U(c_1) + (1 - \lambda) U(c_2)$ subject to (6) and the solution must satisfy the first-order conditions

$$\lambda U'\left(c_{1}\right)=\mu q_{1}\lambda$$

$$(1-\lambda) U'(c_2) = \mu q_2 p (1-\lambda).$$

Then

$$\frac{U'\left(C_{1}\right)}{U'\left(C_{2}\right)}=\frac{q_{1}}{q_{2}p}$$

No-arbitrage conditions

There are zero profits from investing in the short asset if and only if

$$q_1 = 1$$

 Similarly, there are zero profits from investing in the long asset if and only if

$$pq_2=\frac{1}{R}$$

These no-arbitrage conditions imply that

$$\frac{U'\left(C_{1}\right)}{U'\left(C_{2}\right)}=R,$$

the condition required for efficient risk sharing

The banking solution

- A bank takes a deposit of one unit of the good, invests it in a portfolio (x, y) and offers the consumer a **deposit contract** (c_1, c_2)
- Free entry into the banking sector and competition force banks to maximize the ex ante expected utility of the typical depositor subject to a zero-profit constraint
- The bank chooses the investment portfolio (x, y) and the consumption allocation (c_1, c_2) to maximize

$$\lambda U(c_1) + (1 - \lambda) U(c_2),$$

- subject to the feasibility conditions (1) (3)
- The incentive-compatibility constraint is automatically satisfied because $c_1 \leq c_2$

Financial fragility (multiple equilibria)

- Liquidation technology: premature liquidation of the long asset yields $r \leq 1$ units of the good
- If all depositors withdraw at date 1, the liquidated value of bank assets is

$$rx + y \le x + y = 1$$

• If $c_1 > rx + y$, the bank is insolvent and will be able to pay only a fraction of the promised amount c_1 and nothing will be left at date 2

	Run	No Run
Run	(rx + y, rx + y)	(c_1, c_2)
No Run	(0, rx + y)	(c_2,c_2)

No Run

It is clear that if

$$0 < rx + y < c_1 < c_2$$

then (Run, Run) is an equilibrium and (No Run, No Run) is also an equilibrium

• Suspension of convertibility and the sequential service constraint

Equilibrium bank runs

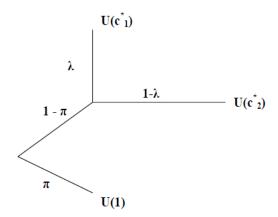
The Diamond-Dybvig argument shows the possibility of an unexpected run

- A run cannot be predicted with certainty
- So, the best we can hope for is a bank run that occurs with positive probability
- A sunspot (random variable) takes two values, high and low, with probabilities π and $1-\pi$, respectively. Depositors run on the bank when the sunspot is "high" and not when it is "low"
- The bank chooses a portfolio (x,y) and a deposit contract (c_1,c_2) , in the expectation that (c_1,c_2) is achieved only if the bank is solvent. In the event of a bank run, the typical depositor will receive the value of the liquidated portfolio rx + y at date 1.

$$(\tilde{C}_1, \tilde{C}_2) = \begin{cases} (rx + y, rx + y) & \text{if } S = \text{"high"} \\ (c_1, c_2) & \text{if } S = \text{"low"} \end{cases}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣Qで

Figure 3: Runs with positive probability



The optimal portfolio

The expected utility of the representative depositor can be written

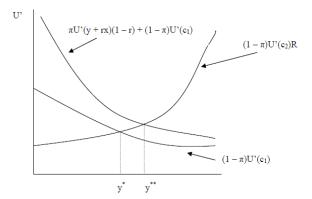
$$\pi U(y + rx) + (1 - \pi) \{\lambda U(c_1) + (1 - \lambda) U(c_2)\}.$$

The optimal portfolio must satisfy the first-order condition

$$\pi U'(y + rx) (1 - r) + (1 - \pi) U'(c_1) = (1 - \pi) U'(c_2) R.$$

- If $\pi = 0$ then this reduces to the familiar condition $U'(c_1) = U'(c_2) R$.
- The possibility of a run $(\pi > 0)$ increases the value of a marginal increase in y and hence increases the amount of the short asset held in the portfolio.

Figure 4: The optimal portfolio when runs are possible



The optimal deposit contract

• The bank chooses the deposit contract (c_1^*, c_2^*) to satisfy the first-order condition

$$U'(c_1^*) = RU'(c_2^*). (7)$$

- ullet Suppose for simplicity that r=1 and relative risk aversion is greater than one. These conditions imply the possibility of a run
- The long asset now dominates the short asset so, without essential loss of generality, we can assume y=0 and x=1
- The deposit contract must solve the decision problem

max
$$\lambda U(c_1) + (1 - \lambda) U(c_2)$$

s.t. $R\lambda c_1 + (1 - \lambda) c_2 \leq R$

Equilibrium without runs

• The bank can prevent a run by choosing a sufficiently "safe" contract:

$$c_1 \leq 1$$

• If we solve the problem

$$\begin{array}{ll} \max & \lambda \, U(c_1) + (1-\lambda) \, U(c_2) \\ \text{s.t.} & R \, (\lambda c_1) + (1-\lambda) \, c_1 \leq R \\ & c_1 \leq 1 \end{array}$$

we find the solution $(c_1^{**}, c_2^{**}) = (1, R)$

()

A characterization of regimes with and without runs

ullet If the bank anticipates a sunspot with probability π , it will be better to avoid runs if

$$\pi U(1) + (1-\pi) \left\{ \lambda U(c_1^*) + (1-\lambda) \ U(c_2^*) \right\} > \lambda U(1) + (1-\lambda) \ U(R)$$

• The expected utility from the safe strategy $\lambda U(1) + (1 - \lambda) U(R)$ lies between two values:

$$U(1) < \lambda U(1) + (1 - \lambda) U(R) < \lambda U(c_1^*) + (1 - \lambda) U(c_2^*)$$

ullet There exists a unique value $0<\pi_0<1$ such that

$$\pi_0 U(1) + (1 - \pi_0) \left\{ \lambda U(c_1^*) + (1 - \lambda) U(c_2^*) \right\} = \lambda U(1) + (1 - \lambda) U(R)$$

• The bank will prefer runs if and only if $\pi < \pi_0$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Figure 5: Equilibrium with positive probability of runs



Essential bank runs

ullet The long asset has a random return $ilde{R}$ at date 2 given by

$$\tilde{R} = \left\{ egin{array}{ll} R_H & ext{w. pr. } \pi_H \\ R_L & ext{w. pr. } \pi_L \end{array}
ight.$$

If the long asset is prematurely liquidated, it yields r units of the good at date 1. We assume that

$$R_H > R_L > r > 0$$

- Without loss of generality we put $c_2 = \infty$ and characterize the deposit contract by $c_1 = d$
- We consider only essential bank runs, that is, runs that cannot be avoided
- At date 1, the budget constraint requires $\lambda d \leq y$. If there is no run, late consumers receive

$$c_{2s} = \frac{R_s(1-y) + y - \lambda d}{1-\lambda}$$

Bankruptcy

• The incentive constraint requires

$$d \leq R_s(1-y) + y$$

• The necessary and sufficient condition for an essential bank run is that the incentive constraint is violated, that is,

$$d > R_s(1-y) + y$$

- There are three cases to consider:
 - the incentive constraint is never binding and bankruptcy never occurs;
 - bankruptcy is a possibility but the bank finds it optimal to choose a deposit contract and portfolio so that the incentive constraint is (just) satisfied:
 - the costs of distorting the choice of deposit contract and portfolio are so great that the bank finds it optimal to allow bankruptcy in the low state

Case I: The incentive constraint is not binding in equilibrium

- We solve the intermediary's decision problem without the incentive constraint and then check whether the constraint is binding or not
- The intermediary chooses y and d to maximize expected utility, assuming that there is no bank run
 - With probability λ , the depositor is an early consumer and receives d regardless of the state
 - With probability $1-\lambda$, the depositor is a late consumer and his consumption in state s is $R_s(1-y)+y-\lambda d$ divided by the number of late consumers $1-\lambda$
- Thus, the expected utility

$$\lambda U(d) + (1 - \lambda) \left\{ \pi_H U\left(\frac{R_H(1 - y) + y - \lambda d}{1 - \lambda}\right) + \pi_L U\left(\frac{R_L(1 - y) + y - \lambda d}{1 - \lambda}\right) \right\}$$

is maximized subject to $0 \le y \le 1$ and $\lambda d \le y$

The optimal portfolio

• Assuming an interior solution, i.e., 0 < y < 1, the optimal (y, d) is characterized by the necessary and sufficient first-order conditions:

$$U'(d) - \left\{ \pi_H U' \left(\frac{R_H(1-y) + y - \lambda d}{1 - \lambda} \right) + \pi_L U' \left(\frac{R_L(1-y) + y - \lambda d}{1 - \lambda} \right) \right\} \ge 0,$$

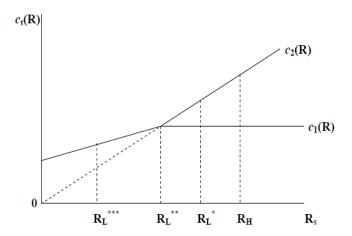
and

$$\begin{split} \pi_H U' \left(\frac{R_H(1-y) + y - \lambda d}{1-\lambda} \right) (1-R_H) \\ &+ \pi_L U' \left(\frac{R_L(1-y) + y - \lambda d}{1-\lambda} \right) (1-R_L) \leq 0, \end{split}$$

with equality in each case if $\lambda d < y$

Optimal Intermediation

Figure 6: Consumption as a function of R



Equilibrium with a non-binding IC constraint

• A solution to these inequalities, (y^*, d^*) , represents an equilibrium if

$$d^* \leq R_L(1-y^*) + y^*$$

- Let U^* denote the maximized value of expected utility corresponding to (y^*, d^*)
- If the low state return R_L is sufficiently high, say $R_L = R_L^*$, then the incentive constraint is never binding
- Early consumers receive

$$c_{1s}=d=rac{y}{\lambda}$$

and late consumers receive

$$c_{2s} = \frac{R_s \left(1 - y\right)}{\left(1 - \lambda\right)}$$

in each state s = H, L

Case II: The incentive constraint is binding in equilibrium

- Suppose that (y^*, d^*) does not satisfy the incentive constraint
- If the intermediary chooses not to default, the decision problem is to choose (y, d) to maximize

$$\lambda U(d) + (1 - \lambda) \left\{ \pi_H U(c_H) + \pi_L U(c_L) \right\}$$

subject to the feasibility constraints

$$0 \le y \le 1$$
 and $\lambda d \le y$

and the incentive constraints

$$c_{2s}=rac{R_s\left(1-y
ight)+y-\lambda d}{1-\lambda}\geq d$$
, for $s=H,L$

• The incentive constraint will only bind in the low state s=L

◄□▶
□▶
□▶
□
□
▶
□
▶
•
□
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•</p

• Substituting for $c_{2L} = d$, the expression for expected utility can be written as

$$\lambda U(d) + (1 - \lambda) \left\{ \pi_H U\left(\frac{R_H(1 - y) + y - \lambda d}{1 - \lambda}\right) + \pi_L U(d) \right\},$$

where the incentive constraint implies that $d \equiv R_L(1-y) + y$

 In this case, the first-order condition that characterizes the choice of y takes the form

$$\begin{split} \lambda \mathit{U}'(\mathit{d}) \left(1 - \mathit{R}_{\mathit{L}}\right) + \left(1 - \lambda\right) \left\{ \pi_{\mathit{H}} \mathit{U}'\left(\frac{\mathit{R}_{\mathit{H}} \left(1 - \mathit{y}\right) + \mathit{y} - \lambda \mathit{d}}{1 - \lambda}\right) \times \\ \left(\frac{1 - \mathit{R}_{\mathit{H}} - 1 + \lambda \mathit{R}_{\mathit{L}}}{1 - \lambda}\right) + \pi_{\mathit{L}} \mathit{U}'\left(\mathit{d}\right) \left(1 - \mathit{R}_{\mathit{L}}\right) \right\} \leq 0, \end{split}$$

with equality if $\lambda d < y$

• Let (y^{**}, d^{**}) denote the solution to this problem and let U^{**} denote the corresponding maximized expected utility

termediation August 6, 2012 31 / 33

Case III: The incentive constraint is violated in equilibrium

• Default in the low state implies expected utility is

$$\pi_{H}\left\{\lambda U(d) + (1-\lambda)U\left(\frac{R_{H}(1-y) + y - \lambda d}{1-\lambda}\right)\right\} \\ + \pi_{L}U\left(r(1-y) + y\right)$$

The FOCs for an optimum take the form

$$\pi_H\left\{\lambda U'(d) - \lambda U'\left(\frac{R_H(1-y) + y - \lambda d}{1-\lambda}\right)\right\} \ge 0,$$

$$\pi_H U' \left(\frac{R_H (1 - y) + y - \lambda d}{1 - \lambda} \right) (1 - R_H) +$$

$$\pi_L U' \left(r(1 - y) + y \right) (1 - R_L) \le 0,$$

with equality if $\lambda d < y$

ullet Let (d^{***}, y^{***}) and U^{***} denote the solution and maximum value

Optimal Intermediation August 6, 2012 32 / 33

• If $R_L = R_L^{***}$ then bankruptcy occurs in the low state and both early and late consumers receive the same consumption in the low state:

$$c_{1L} = c_{2L} = y + R_L (1 - y) < d$$

In the high state,

$$c_{1H}=d$$
 and $c_{2H}=rac{R_{H}\left(1-y
ight)}{1-\lambda}$

This is an equilibrium solution only if

$$d^{***} > R_L(1-y) + y$$
,

and

$$U^{***} > U^{**}$$

- The first condition guarantees that the incentive constraint is violated
- The second condition guarantees that default is preferred to solvency