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Abstract

During recession, many macroeconomic variables display higher lev-
els of volatility. We show how introducing an AR(1)-ARCH(1) driving
process into the canonical Lucas consumption CAPM framework can ac-
count for the empirically observed greater volatilty of asset returns dur-
ing recessions. In particular, agents’ joint forecasting of levels and time-
varying second moments transforms symmetric-volatility driving processes
into asymmetric-volatility endogenous variables. Moreover, numerical ex-
amples show that the model can indeed account for the degree of cyclical
variation in both bond and equity returns in the U.S. data. Finally, we
argue that the underlying mechanism is not specific to financial markets,
and has the potential to explain cyclical variation in the volatilities of a
wide variety of macroeconomic variables.

1 Introduction

When it rains, it pours. In times of recession, not only are many macroeconomic
variables in bad shape with respect to their levels, but they are also plagued by
higher levels of volatility. But what is it about recessions that seems to exacer-
bate volatility?

This paper is based upon Chapter 1 of my Ph.D. thesis at the Universitat Pom-
peu Fabra. Many thanks to Marianne Baxter, Jordi Caballe, Antonio Ciccone, Jim
Costain, Jean-Pierre Danthine, Harris Dellas, Bernard Dumas, Albert Marcet, An-
tonio Novales and Rafael Repullo for valuable comments and suggestions. I also
benefitted greatly from comments of seminar participants at the Bank of England,
Carlos III, UPF and Warwick Business School, as well as the CEPR/LIFE/Wharton
Conference on International Finance and Economic Activity (Vougliameni, 2000), the
World Congress of the Econometric Society (Seattle, 2000) and the European Finance
Association Annual Meeting (London, 2000). The usual caveat applies.



In order to address the question of why volatility might be higher during
recessions, a framework must allow volatility to vary over time. That is, not
only the first but also the second moments of relevant processes must change
over time. In such a framework, agents need to base their optimal decisions upon
forecasts both of future levels and of future variances. The main contribution
of this paper is to show that it is precisely agents’ optimal joint forecasting
of levels and variances which leads to volatility which is asymmetric over the
business cycle. In more technical terms, symmetric-volatility forcing processes
are transformed into asymmetric-volatility endogenous variables. High-volatility
recessions and low-volatility expansions may emerge endogenously due to agents’
optimal behavior when forecasting levels and variances jointly

What is it about forecasting variances and levels jointly that produces asym-
metries? In the ARCH-forecasting framework developed in this paper, agents
use observations on the innovations w; to forecast the level of some process,
while using u? to forecast its variance. This means that each realization of the
shock carries two messages: one on the level and another on the variance. These
two pieces of news may reinforce one another, but they can also contradict one
another. For example, a large negative shock will hold two pieces of bad news:
bad news on the level due to u; < 0 and bad news on the variance due to u?
large. Thus, any dismay about the bad news of a large negative shock will be
amplified: when it rains, it pours. A large and positive shock, on the other hand,
will carry both good news and bad news. Any exuberance about the good news
on the level u; > 0 will be dampened by the bad news about the variance due
to u? large. Thus, agents’ reactions to large positive shocks and large negative
shocks will be asymmetric, which in turn generates asymmetries in endogenous
variables. These asymmetries turn out to be more important for the volatilities
than for the levels of the variables.

The greater part of the paper will be devoted to studying the when it rains it
pours mechanism in the context of a consumption CAPM model, of the kind first
introduced by Lucas (1978). Despite its well known failings, the consumption
CAPM has one important advantage: simplicity. Although the CCAPM is a
dynamic general equilibrium model, it is possible to find closed form solutions
for some types of asset returns, namely bond returns. By studying these closed
form solutions it will be possible to gain some insight into how the when it rains it
pours mechanism works. Moreover, the CCAPM is flexible enough to generate a
wide variety of asset returns, providing an opportunity to compare the workings
of the mechanism in bond and equity returns. The final part of the paper is
then devoted to a pair of numerical exercises, in order to determine whether
the volatility asymmetries generated by the when it rains it pours mechanism
are empirically relevant and quantitatively significant for reasonable parameter
values. It turns out that the degree of countercyclical heteroscedasticity in both
bond and equity returns is indeed quantitatively significant and quite similar to
that found in the data.



1.1 Asymmetric Volatility

The greater volatility of asset returns during recessions was first noted by Offi-
cer (1973). Schwert (1989) presents further evidence that equity and short-term
bond returns are more volatile during recessions. In particular, Schwert (1989)
reports estimates that monthly equity returns were 68% more volatile during re-
cessions than during expansions in the post-war U.S. data (1953-1987). Over the
same period, monthly short-term bond returns were estimated to be 134% more
volatile. Such countercyclical heteroscedasticity also seems to be a property of
other kinds of economic variables: Schwert (1989) also presents evidence that
production growth rates are more volatile during recessions. Although such a
wide range of variables displays greater volatility during recessions, theoretical
explanations have been specific to equity returns.

For equity returns, two explanations for CCH have been advanced. The
most prominent explanation is the ”leverage effect”, originally due to Black
(1976), for which Schwert (1989) provides partial empirical support. During
economic contractions, an asset’s total value declines, so that the proportion of
its value which is levered increases. More highly levered assets are riskier, so the
leverage effect leads to equity returns which are more volatile during recessions.
However, leverage is not of much help for fully-levered assets, most notably
bonds, whose returns also display countercyclical heteroscedasticity. Leverage
is of even less help in explaining CCH in more general macroeconomic variables,
such as production growth. Thus, it seems that a deeper mechanism is needed,
one which is capable of generating asymmetries in volatility over the business
cycle in a wider range of variables.

The first objective of this paper is to describe such a deeper mechanism,
one which is based upon agents’ joint forecasting of levels and variances of
relevant driving processes in a dynamic general equilibrium framework. The
mechanism is based upon the idea that it is the sign of an innovation which
determines whether it carries good or bad news on the level, but the magnitude
which determines whether news on the variance is good or bad. Since sign
and magnitude need not coincide, we obtain a richer set of implications for
the equilibrium dynamics of endogenous variables. Among these implications
is asymmetric volatility in endogenous variables over the business cycle. In
particular, it will be shown that greater volatility of endogenous variables results
under quite general conditions.

To my knowledge, the only other formal model analyzing a similar mecha-
nism is that of Campbell and Hentschel (1992). They develop an equity-specific
volatility feedback mechanism which is similar to the when it rains it pours
mechanism presented in this paper. In the volatility feedback mechanism, time-
varying second moments also serve to amplify equity returns’ reactions to neg-
ative innovations in dividends, helping to account for the empirically observed
correlation between negative innovations and volatility of equity returns. As
the name suggests, it is a feedback mechanism: its focus is upon the effects of
current innovations to dividends on current equity return volatility. Further,
volatility feedback operates within an empirical (non-equilibrium) framework



and is equity-specific. In particular, it is based upon a log-linear approximation
to the ex definition relationship between returns, prices and dividends, better
known as the present-value dividend model of Campbell and Shiller (1988a,b).

In contrast, we are interested in addressing volatility asymmetries in a more
general class of variables, and focus on forecasting in dynamic general equi-
librium. General equilibrium places stronger restrictions on the relationship
between returns, prices and dividends. Not only must the present-value divi-
dend relationship of the volatility feedback mechanism continue to hold, but the
returns must also be consistent with agents’ risk preferences, in conjunction with
their expectations on the stochastic dividend process. Given the fundamental
importance of agents’ risk preferences in determining their reactions to volatil-
ity, there is reason to believe that these restrictions may indeed be important,
both theoretically and quantitatively. Moreover, when it rains it pours differs
from wolatility feedback in its timing. While Campbell and Hentschel (1992)
stress the simultaneous effects of innovations, the focus in this paper is on the
effects of innovations on agents’ forecasting, and thus upon future asset return
volatility. In this sense, the two approaches are complementary, and will turn
out to deliver complementary results.

1.2 GARCH Processes

Clearly, the when it rains it pours mechanism depends crucially on the use of
squared residuals u? in variance forecasting. The most direct way - but not the
only way - to induce agents to use squared residuals in their optimal forecasts is
to assume that innovations are governed by ARCH or GARCH processes.! The
ARCH specification, introduced by Engle (1982) and generalized by Bollerslev
(1986) to GARCH, have been some of the most popular approaches to modelling
time-varying second moments.?

Literally hundreds of papers have documented the empirical success of
GARCH specifications, especially in modelling volatility in financial markets.
(For a survey see Bollerslev, Chou and Kroner (1992).) GARCH has also been
employed quite widely in modeling the variance of non-financial variables. For
example, Gallant and Tauchen (1989) find evidence of GARCH-type volatility in
the aggregate consumption process, while Engle (1982) finds evidence of ARCH
in inflation. These latter two findings motivate the assumption in this paper
that the variances of consumption growth and/or inflation follow an ARCH(1)
process.? That is, since (G)ARCH specifications do very well at representing the

INote, however, that ARCH or GARCH volatility are not necessary ingredients for asym-
metries to arise. As will be seen in Section 6, the crucial point is that the endogenous variable
contain a quadratic term. Although (G)ARCH is one particularly elegant way of introducing
quadratic terms, it is by no means the only way.

2In an ARCH(q) process, next period’s conditional variance J%Jrl is a linear and stochastic

function of ¢ lagged squared residuals (u%,u%_l,...u%_q>. The GARCH(p,q) specification

adds linear dependence on p previous variances (J%,J%_l, ...J%_p). Such a specification is

said to include p GARCH terms and ¢ ARCH terms.
3The theoretical part of the paper will assume, for the sake of tractability, that consumption



empirical properties of variance processes, it seems natural to integrate them
into theoretical models as well.

In contrast to the voluminous body of empirical literature, relatively few
theoretical models take time-varying second-moments into account. Notable ex-
ceptions are Kandel and Stambaugh (1990), Canova and Marrinan (1991,1993),
and Bollerslev, Engle and Wooldridge (1988). Canova and Marrinan introduce
time varying-volatility by means of GARCH innovations to the money supply
and government expenditure functions into an ICCAP model, which they then
use to study exchange rate volatility and the term structure of interest rates.
Bollerslev, Engle and Wooldridge (1988) introduce time-varying covariances into
a CAPM model. Closest in approach to the present model is the work of Kan-
del and Stambaugh (1990): they introduce second moments of consumption
growth which follow a simple autoregressive process into a consumption CAPM
framework, and examine the ability of such models to generate large equity pre-
mia. In contrast, here we concentrate on variances rather than levels, and upon
(G)ARCH second moments.

1.3 Quantitative Significance

The second objective of this paper is to show that the degree of CCH in real
and nominal bond returns and equity returns is indeed quantitatively significant
and empirically relevant. If agents have low to moderate levels of relative risk
aversion, then the model is able to match quite well the 29% by which short-
term bond returns were estimated by Schwert (1989) to be more volatile during
recessions over the last century. Moreover, it will become clear that greater
volatility of real bond returns during recessions may be due to ARCH volatility
in consumption growth, while the greater volatility of nominal bond returns
during recessions may be due either to ARCH in inflation or in consumption
growth or both.

Equity return results are complementary to those of Campbell and Hentschel
(1992). In the when it rains it pours framework, next-period equity returns turn
out to be more volatile during recession, but only at low to moderate degrees
of risk aversion. When parameters are chosen to match U.S. monthly consump-
tion data?, simulated equity returns turn out to be more than twice as volatile
during recessions as during expansions. However, the degree of countercyclical
heteroscedasticity in equity returns is decreasing in risk aversion. The behavior
of when it rains it pours in conjunction with risk aversion turns out to very
important in interpreting the results, and will be discussed at length in Section
5.

The remainder of the paper is organized as follows: Section 2 presents the

growth follows an ARCH(1) process. I have, however, also examined a numerical example
with a GARCH(1,1) consumption process, which gives qualitatively similar (and somewhat
stronger) results. Details are available upon request.

18ee Section 5 for a discussion of the use of monthly versus quarterly data. All simulations
have also been performed for the calibration to quarterly data presented in Appendix B.1.
Quarterly results do not vary in any significant way, and are available upon request.



general framework and derives equilibrium asset returns with ARCH(1) vari-
ance forecasting. Section 3 derives closed form solutions for ARCH(1) bond
returns and discusses some general properties of bond returns when variances
are time-varying. In Section 4 the focus is upon ARCH(1) bond return wvolatil-
ity: we first link volatility to innovations, and then innovations to recessions, in
order to examine the relationship between volatility and the business cycle more
closely. Section 5 presents simulation results on real and nominal bond and eg-
uity returns from both ARCH and constant variance models calibrated to U.S.
data. Section 6 discusses extensions of the results to non-financial variables,
and Section 7 concludes.

2 CAPM with ARCH(1) Variance

In this section, the goal is to introduce symmetric heteroscedasticity in the
driving process into a consumption-CAPM model of the type first described in
Lucas (1978). This provides a simple stochastic dynamic general equilibrium
framework in which to test the ability of joint variance and level forecasting to
generate asymmetries in the volatility of endogenous variables. In consumption-
CAPM models, these endogenous variables are the returns on claims to ag-
gregate consumption (equity returns) and the returns to one-period bonds. I
will describe how equilibrium asset returns are related to the symmetrically
heteroscedastic consumption growth process. This relationship will provide a
precise basis for the discussion on asymmetric heteroscedasticity in endogenous
variables in the sections to follow.

2.1 Asset Returns in an Exchange Economy

Consider a simple stochastic dynamic general equilibrium model of the type first
introduced by Lucas (1978). Agents choose streams of consumption and asset
holdings {c¢, z;}, to maximize the discounted sum of future utilities, given the
stochastic process for endowments {y;},. Formally, they solve

maxZ(Stu (Ct) (1)

subject to the resource constraint

yt+Rt+1zt = Ct+2t+1 tZO,l,...
{ye}s c_1,2_1 given (2)
where R;y1 is the gross return on the asset z;. The asset is in zero net supply,

so that in equilibrium z; = 0. The equilibrium solution to this optimization
problem takes the form of an Euler equation, which may be written as®

1=6E, {%Rm} (3)

5This Euler equation for general assets was first derived by Grossman and Shiller (1981).




Assuming power utility u (¢;) = ﬁci 77, the Euler equation may be expressed

in terms of the consumption growth rate @441 = <2 as:

1= (5Et {1”;)1Rt+1} (4)

where 7 represents the coefficient of relative risk aversion.
One can now apply the Euler equation (4) for general asset returns in an
Lucas exchange economy to two types of assets. I follow the tradition in the

Macrofinance literature, and focus on the returns to equity and to one-period
bonds.

2.1.1 Equity Returns

In the CCAPM, equity is defined as a claim to consumption and saving is ruled
out, hence in equilibrium the dividend d; is equal to aggregate (per capita)
consumption ¢;. Its gross return may be expressed as Ryy1 = p—“‘%td"ﬂ. Sub-
stituting into equation (4) yields

pe = 0B {x; ) {pr1 + desa}}

In a growing economy, dividends d; and prices p, are non-stationary. Under
balanced growth, however, these variables grow at the same average rate x;, so
that the price-dividend ratio 5_: is stationary. Thus, it is helpful to write the
Euler equation for a claim to consumption in terms of stationary variables as

B _ s, {x§+;' <p—t+ -+ 1)} (5)
d, di1

The sequence of price-dividend ratios {%} satisfying equation (5) may be
)t

approximated using the parameterized expectations approach of Marcet and
Marshall (1994) [See Appendix.C for details.]. Once one has obtained the equi-

librium price-dividend sequence %:} , equilibrium returns may be recovered
)t

as
D1/ der1 + 1

pt/dt (6)

Rt+1 = Tt41

2.1.2 Bond Returns

One-period bonds may be represented as claims to an asset paying a dividend
of one unit of the consumption good (d; = 1) which mature at t+1 ( pip1 = 0).
Substituting into equation (4) yields the following expression for the price of
the one-period bond

0 = 65, {2y} @

Under power utility and log-normally distributed consumption growth rates
x14+1, Hansen and Singleton (1983) show that it is possible to find analytical
solutions for prices and returns on one-period bonds. Since the gross return on



a one-period bond is Riy1 = q—lt, and thus th”+1 = log Rt+1 = —log q¢, one may
use equation (7) above and write:

2
7{+1 = —logé+ vEilogziyr — %Um‘t log z¢ 41 (8)
—_——

smoothing term precautionary term

The smoothing term reflects the fact that agents wish to borrow against future
consumption growth, placing upward pressure on interest rates. The precau-
tionary term, on the other hand, captures the effects of consumption volatility.
The more volatile the future growth rate, the more agents wish to insure them-
selves by means of precautionary savings. Increased demand for savings will
place upward pressure on the interest rate.

Equations (5) and (8) define a relationship between the expected growth rate
of consumption x;41 and the equilibrium returns of equity and one-period bonds.
Thus, the precise nature of the process governing the consumption growth rate
plays a crucial role in determining the properties of the equilibrium returns.
The next section describes the driving process for log x4, 1 assumed here, which
incorporates time-varying second moments.

2.2 Incorporating AR(1)-ARCH(1) Consumption Growth

It is at this point that the framework here diverges from the canonical Lucas/Mehra-
Prescott model. The differing element is the introduction of time-varying sec-
ond moments in the driving process. In particular, it is now time to incorporate
symmetric heteroscedasticity in the innovation u, by means of an ARCH(1)
specification.

To see how this works, suppose that the consumption growth rate log x;y1 =

log (c—’c’[ﬂ) follows an AR(1) process

log zi41 = ¢+ plogxe + ura lpl <1 9)

This is a standard approach to modeling consumption growth in the consumption-
based asset pricing literature. Now we incorporate heteroscedasticity in the
innovation u; by means of an ARCH(1) process. Innovations which are u; ~
ARCH (1) may be described as:

U1 N (O,U%Jrl)

o1 = AJE+au? v where v41 ~ i.i.d.N (0,1)

The ARCH(1) specification has the convenient property that the conditional

expectation of the variance is linear in the lagged squared innovation u?:

B} =&+ auf (10)

Heteroscedasticity in the innovations induces heteroscedasticity in the con-
sumption growth rates log x;41. Moreover, this heteroscedasticity is symmetric



over the business cycle: consumption growth is just as volatile in recessions as
in expansions. In particular, the consumption growth rate is symmetrically and
conditionally log-normally distributed with moments:

Elogxiyy = c+plogay (11)
varglogry; = §+au? (12)

Thus, each innovation u; has an impact on both the expectation of log z;y1
(vialog z:), and upon its variance. A large negative innovation will cause agents
to expect future consumption growth to be low and volatile: when it rains it
pours. Agents observing a large positive innovation, on the other hand, will
expect future consumption growth to be high but volatile. In this latter case,
any exuberance about high future growth will be dampened by worries about
the economy ”overheating” due to increased volatility. Consumption CAPM
with ARCH(1) Variance

In the following section, we introduce such symmetric ARCH(1) volatility
in the driving consumption growth process into the simple consumption-CAPM
model. This provides a simple dynamic general equilibrium framework in which
to test the ability of the when it rains it pours mechanism to generate asymme-
tries in the volatility of endogenous variables. In consumption-CAPM models,
these endogenous variables are the returns on claims to aggregate consump-
tion (equity returns) and the returns to one-period bonds. I will describe how
equilibrium asset returns are related to ARCH(1) consumption growth. This
relationship will provide a precise basis for the discussion on asymmetric het-
eroscedasticity in endogenous variables in the sections to follow.

3 Bond Returns with and without ARCH

Now I wish to analyze more carefully the effects of time-varying volatility and
"when it rains it pours” variance forecasting. Since bond returns’ closed form
solutions lend themselves to such careful analysis, I begin by examining bond
returns in some detail. The most natural place to start is by comparing the
equilibrium bond returns with and without ARCH. For the AR(1)-ARCH(1)
framework introduced above, the return to a one-period bond may be obtained
by substituting the conditional moments (11) and (12) into the general equation
for the bond return (8) to obtain:

2
7’{+1 = —logd+y[c+ ploga] — % € + ouf] (TZH—ARCH)
—_——
~—_——

smoothing term .
precautionary term

Similarly, when consumption growth variance is constant and equal to o2 the
bond return may be written as:

2
rfy = —logé+y[c+ plogz] — %ai (rf,,—no ARCH)
N——
N—

smoothing term .
precautionary term



Clearly, the smoothing effect will be identical in both the ARCH and no-ARCH
cases. Thus, any differences in the properties of ARCH and no-ARCH bond
returns must be due to their differing precautionary terms, and thus to their
variances.

Indeed, the precautionary effects will most likely differ. This is due to the
fact that the ARCH variance forecasts are varying over time. At times, the
ARCH variance forecast & + au? will be greater than its constant uncondi-
tional mean o2, placing additional downward pressure on the riskfree rate via
a stronger precautionary effect. At other times, however, the ARCH variance
forecast will be lower than average: relatively calm times will weaken the pre-
cautionary motive to save, placing additional upward pressure on the riskfree
rate.

Figure (1) illustrates this variance-based difference between ARCH and no-
ARCH bond returns. The solid line plots ARCH bond returns as a function of
ug, while the dashed line represents bond returns when variance is constant. For
large magnitude innovations, the news on the variance is bad, placing downward
pressure on the risk-free rate via the precautionary motive, and the ARCH bond
returns curve lies below the corresponding constant variance line. For small
magnitude innovations, however, the good news on the variance puts upward
pressure on the risk-free rate. As a result, the ARCH bond return is greater than
its constant-variance counterpart, and the ARCH curve lies above the no-ARCH
line.

The quantitatively significant effects of time-varying second moments are
not, however, on the bond returns themselves nor on their overall volatility.
In fact, overall unconditional moments of bond returns in the ARCH and no
ARCH cases are almost indistinguishable. Table 3.1 reports sample mean bond
returns for the ARCH and no ARCH calibrations for three degrees of risk aver-
sion 7. The greatest difference is one basis point (one-hundredth of a percentage
point). Similarly, Table 3.2 below shows that overall bond return volatility is
not affected to any great extent by variance-forecasting either. Thus, introduc-
ing time-varying second moments to the driving process leads to bond returns
whose overall moments are nearly indistinguishable from their constant variance
counterparts.

Table 3.1: Average Monthly Bond Returns

~y 15 2.0 1.0
ARCH 126% 134% 1.68%
no ARCH 126% 134% 1.67%
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Table 3.2: Bond Return Volatilities

v 15 2.0 1.0
ARCH 0.10% 0.15% 029%
no ARCH 011% 015% 0.29 %

Tables 3.1 and 3.2: Results refer to 50 runs of 5000 periods each of
ARCH and no ARCH models where the consumption growth process has
been chosen to match U.S. monthly data, as detailed in Section 5. It
was never possible to reject the null hypothesis that the ARCH and no
ARCH sample means were equal.

4 Asymmetric Volatility of ARCH Bond Returns

Although the unconditional moments are scarcely affected by variance-forecasting,
variance forecasting does have significant and interesting effects on the volatil-
ity of bond returns over the business cycle. To see this, take a second look at
Figure (1): it illustrates the fact that the ARCH bond return may be expressed
as a quadratic function of the date ¢ innovation to consumption growth wu; as:

2
th+1 (ut) = kag-1+ypur — %auf (Tfﬂ - ARCH)
dri )
M = p—~aw (ud; - - ARCH)
dut t
where all elements of kg, 1 = —logé + v [c(l +p) + p? logxt,l] _ 3;5 are

parameters or constant (already realized) at date ¢.
In contrast, when variance is constant and equal to 02, as it is in the canon-
ical model, the bond return may be written as a linear function of wu;:

7{4—1 = knat—1+ypw (T[+1 - no ARCH)
dr

4= (rf., - no ARCH)
dut

where kpa.1 = —logd + 7 [c(l +p)+p? logxt_l] — Jgai

What does this mean for the reaction of bond returns to positive and negative
innovations? Note that for the concave bond return function (13), the slope of
the bond return is decreasing in u;, while for the linear no-ARCH bond return
line, the slope is constant. This is illustrated in Figure (2): in the no-ARCH
case, the constant slope translates into bond return which react symmetrically
to positive and negative innovations. In the ARCH case, however, the decreasing
slope translates into stronger reactions to negative innovations than to positive
ones of equal magnitude. This is reflected by the fact that the ARCH plot of

arl | . . . - . .
ZtTfl lies above the horizontal no-ARCH line for all negative innovations, while
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it lies below the horizontal no-ARCH line whenever u; > 0. Thus, variance-
forecasting tends to amplify the effects of negative shocks, while dampening the
effects of positive shocks. This clearly induces a negative correlation between
innovations to the consumption growth rate process and bond return volatility,
which is considered in greater detail in what follows.

4.1 Negatively Skewed Heteroscedasticity

Negatively Skewed Heteroscedasticity (NSH) captures the idea that negative
innovations are associated with greater volatility. Formally, NSH may be ex-
pressed by means of conditional bond return variance® which is greater condi-
tional on innovations being negative:

s F f r
E { <rt+1 (ug) — Et—17”t+1) |y < O} > F { (Tt+1 (ug) — Et_17‘t+1> |ug > 0}

vary [T{+] Jug <0] vary [r{_H |we 20]

(13)
Equivalently, one may write the above equation in terms of absolute deviations
from the conditional mean as:

E{‘T{H (ug) — Et,lrfﬂ‘ lue < 0} > E{‘T{H (ug) — Et,lrfﬂ‘ |wg > 0} (14)

4.1.1 No ARCH, no NSH

First, it can be shown that constant-variance bond returns do not exhibit skewed
heteroscedasticity. That is, in the no-ARCH case symmetrically time-varying
second moments to the driving process lead to symmetrically time-varying sec-
ond moments in the endogenous variable.

Begin by noting that in the constant variance model the innovation needed
to induce the conditional mean bond return is w; = 0. That is u; = 0 is the
innovation which satisfies E;_irf = 7{ 41 (). For constant-variance bond
returns, then, the absolute deviation in the bond return from its conditional
mean due to an innovation u; may be written as

sVA ( 7{4—1 (ut) — th+1 (0)

up) = TZH (u) — Etflrg-i-l‘ =

Thus, sV4 (u;) may also be expressed as the integral:

w gpf
sNA () = /0 7"t#(“)du (15)

6Note that although the bond return between dates t and t + 1 is called th+17 this bond
return is determined at date ¢t based upon date t expectations on date t + 1 growth rates.
Thus, the appropriate conditional variance concept is the expectation of the squared difference
between the bond return’s realization (at date t) and its conditional expectation at date t — 1.

2
Formally: vars {rtf+1} =F { (rthrl (ut) — Et,1T{+1) }
T Also, 5y = 0 also induces the unconditional mean bond return on average in the constant
variance model. See Appendix 1.A for details.
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The integral (15) yields a particularly convenient graphical representation of
sN4 (ug). In Figure (3), one can see that (15) corresponds to the shaded area
under the horizontal no-ARCH line between u; and 0.

To show that bond return volatility is symmetric in the constant variance
case, it is necessary to show that volatility is equally large conditional on inno-
vations being negative or positive. Thus, one must show that the average size of
the shaded area taken only over negative innovations u; < 0 is just as large as
the average size of the shaded area taken only over positive innovations. This
is clearly the case. To see this, note that for each pair of positive and negative
innovations of equal magnitude (u,u ™), the absolute deviations are also equal,
as illustrated in Figure (4). Formally:

ut >0

s" (ut) = "4 (u—) for 7+

(16)
Since u; is symmetrically distributed about zero, the equal magnitude positive
and negative innovations ut and u~ are equally likely. Thus, it is easy to see
that

E {S"A (w) luy <0} = E {s"A (ur) Juy > 0}

In the no-ARCH case, positive and negative innovations have symmetric effects
not only on the bond returns themselves, but also upon their deviations from
their conditional means Et,lrf 11, and thus on their conditional volatility.

4.1.2 ARCH and NSH

The ARCH case is somewhat more complex. First consider something close to
the absolute deviation of the bond return from its conditional mean, namely the
deviation from its u; = 0 value:

s (u) = |rfyy (u) =l (0)

It is easy to see that s§' (u;) corresponds to the vertically striped region under
the ARCH line between u; and 0 in Figure (5). It is also clear that the ARCH
deviation will be of greater magnitude for negative innovations. The area under
the ARCH line between 0 and u ™ is clearly greater than that between 0 and u™
in Figure (6) so that
+
A — A u™ >0
so (u7) > s (ut) for = —ut

Now symmetry of the distribution of u; about zero implies that the average size
of the shaded area under the ARCH line will be greater over all negative shocks:

E {SOA () lur < 0} >F {564 (ue) |ug > O} (17)

Thus, in the ARCH case, negative innovations have greater effects on s¢' than
do positive innovations, inducing an asymmetry in the reaction of bond returns
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to positive and negative innovations if the conditional mean-inducing innovation
were u; = 0.

However, (17) is not necessarily equivalent to asymmetric volatility for the
ARCH case. This is due to the fact that in the ARCH case, uy = 0 is not
the innovation required to induce the conditional (or unconditional) mean bond
return Ey_qr] 1 (or Erf). By the two lemmas below, whether the (conditional)
mean-inducing innovation is positive or negative will depend upon the serial
correlation of consumption growth p. In what follows, the focus will be on the
empirically relevant case of positive serial correlation in growth rates. Positive
serial correlation in log z; leads to mean-inducing innovations which are positive,
which turns out to work in favor or NSH.®

Lemma

Assume that v,a,& > 0, so that agents are risk averse, and variances are
positively serially correlated and guaranteed to be positive. For p > 0, the con-
ditional mean-inducing innovation uj is given by

—p+ \//)2 +7%ac(uf )

up = >0
! Ve (ugfl)
for all values of u?_, where c (u%_l) == (p2 + a) (f + au%_l).
Proof
See Appendix AR

Positive u; works in favor of NSH. The reason is that any given negative
innovation will be further away from to a positive @; than from 0. This works
augments the asymmetry due to the negatively sloped ARCH % line.

To see this more clearly, recall that s# (u;) may be expressed as the integral:

wy gt
/ driyq (u) du (18)

st (ur) =

du

t

For @; = 0, the integrals for positive and negative shocks u™ and u~ are taken
over equally sized ranges. Thus, the fact that the integrand is always greater
for w™ is sufficient for the u~ -integral to be greater, so that NSH holds. For
u; > 0, negative innovations must travel even further to reach u;, so that the
u™- integral is taken over a greater range than the corresponding ut-integral,
reinforcing NSH. If %; were negative, however, negative innovations would not
have to ”travel” as far to reach u; as do positive ones. Thus, the range of the
u~ integral would be smaller, while its integrand is greater, so that it would not
certain which of these countervailing influences on s (u;) will prevail.

8When growth is negatively serially correlated (p < 0), however, the (conditional) mean-
inducing innovation is negative. A proof is given in Appendix 1.A.
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Table 4.1: Mean-Inducing Innovations and Asymmetric Absolute

Deviations
Case Range Effect Integrand Effect Total Effect
~ ~ ~ dr] (v~ dr] (vt .
U <0 | Jug —u™| < Jug —ut| i () > el (v7) ambiguous

U
dT{g(“) > dr{g(“) s (um) > 4 (ut)
U u
drf u drf ut _
bale) o 2iald) | d ) > At

ﬂt:O |ﬂtfu_|:|ﬂt—u+|

at>0 |ﬁt—u’|>|ﬂt—u+|

Taken together, the greater is the slope of the ARCH-line in Figure (6) and
the larger is the (positive) mean-inducing innovation %, the more pronounced
will be the negative skewness of the heteroscedasticity.”

4.2 Greater Volatility during Recessions

What is really of interest here, however, is the relationship between reces-
sions and bond return volatility. Bond returns which are countercyclically het-
eroscedastic (CCH) display conditional variances which are greater whenever
the innovation wu, is recessionary. Formally, CCH is said to hold whenever

E {s* (u;) |u¢ recessionary} > E {5 (u;) |u; expansionary}

To the extent that negative innovations to consumption growth are linked to
recessions, one would expect NSH to be linked with CCH. It turns out that
in growing economies, CCH is more likely to hold than NSH. Further, CCH
may even hold in an economy which is in long-run decline. In order to examine
this more closely, it is first necessary to define more precisely what is meant by
recession and expansion.

4.2.1 Recession and Expansion

An innovation w; is called recessionary whenever it causes the growth rate
log x; to be negative. More precisely: w; is recessionary whenever logx; =
¢+ plogxi_1 + ug <0, which translates into a condition on u; as

ug € {U;*} whenever u; < —c—plogr_1 =T (19)
u € {U;P} whenever w > —c—plogz, 1 =7, (20)

Thus, for any given log z; 1 and any AR(1) parameters, the recessionary thresh-
old w; divides the support of innovations into two disjoint subsets. This is illus-
trated in Figure (7). The subset of recessionary innovations U;*° is that subset
of the real numbers which is lies below the recessionary threshold, while the
subset of expansionary innovations U™ is its complement.

Note also that the recessionary threshold u; will be shifting over time de-

pending upon last period’s growth rate logx, 1. If last period’s growth rate

9By completely analogous arguments, it is possible to see that bond return volatility ex-
hibits positively skewed heterskedasticity when growth is negatively serially correlated (p < 0).
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was large and positive, then it will take a relatively large negative innovation to
throw the economy into recession. If, however, last period’s growth rate log x;_1
was already recessionary, then it is possible that even small positive innovations
will be sufficient to keep the economy in recession. From equation (19) one
obtains that the recessionary threshold will be symmetrically and normally dis-
tributed with mean —p,, and variance p?02. Thus, the greater the growth trend
in the economy, the more strongly negative will the recessionary threshold tend
to be.

4.2.2 Countercyclical Heteroscedasticity in a Growing Economy

Now it is possible to make more precise the idea that bond returns are more
volatile during recessions than expansions. Formally, consider the CCH property
for given u; and given recessionary threshold @;: CCH holds for (u;, ;) whenever

E{S{l+1 (Ut) | Ut < ﬂt,ﬂt} > E {524+1 (Ut) | Ug > Ht,ﬂt} (21)

The absolute deviation in the bond return at date ¢ + 1 may be written as a
function of the innovation at date ¢ as

St+1 = 7{4—1 (ut) — 7"1{4-1 (ur)| = (22)

/u" dT{ﬂ (u) du
Uy du

Proposition

In a CCAPM economy with ~, p,a, & > 0, so that agents are risk averse, en-
dowment growth and volatility are both positively serially correlated, and volatil-
ity is guaranteed to be positive, CCH holds all pairs (uy,u;) such that Ty < .

Proof

Since vy,a,§ > 0, Lemma 1 implies that the (conditional) mean-inducing

innovation uy s positive for p > 0. Further, v,p,a > 0 guarantees that the
)

integrand dL’%;fi is monotonically decreasing in ug.

Thus, once again siy (™) > sy (uh) for all pairs (u™,u™) where —u~ =
ut > 0, both due to the larger range [u™, ;] when u; > 0, and due to the
larger integrand of sfﬂ (u™). Since the economy is growing, u, > 0, and the
recessionary threshold w; is symmetrically distributed about —p, < 0.

First, consider the case that the recessionary threshold is negative, so that
U, < 0. First note that s{, (u™) > s{{; (u™) clearly also holds for each member
of the subset of all pairs (u™,u") such that u~— € UJ°. Formally:

E {sﬁrl (ug) Jug < Ht} > F {sﬁrl (ug) lug > =1y > 0} (23)

Furthermore, 524+1 (u™) is monotonically increasing in the magnitude of u™.
Thus, the deviation due to any negative and recessionary innovation is larger
than that due to any negative but expansionary innovation. Formally, this im-
plies that :

E {8244‘1 (Ut) |Ut S ﬂt} > F {8244-1 (Ut) |Et < Ug S O} (24)
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Taken together, (23) and (24) imply that bond returns satisfy CCH for all
(e, ur) such that uy < 0 < Uy.

Now consider the case that the recessionary threshold u; is positive but less
than the mean-inducing innovation Uy, so that 0 < Wy < u;. Let —u~ = ut > 0.

y dr] .
By monotonicity of Tt#fut), recall that 5{1_,_1 (u™) > s{l_,_l (ut) for all pairs

(u—,ut). This is also true for the subset of all large magnitude innovations
|ug| > U, and innovations are symmetrically distributed about zero, so that

E {Sf—i—l (Ut) |Ut S —ﬁt} > F {824-1-1 (Ut) |Ut Z ﬁt} (25)

Now consider the small magnitude innovations |u;| < . s, (u;) is monoton-
ically decreasing over the interval |ut| < Uy, so that taking expectations yields

FE {Sf—i—l (Ut) | - ﬂt < Ut S Et} > F {824-1-1 (Ut) |Et S U < ﬂt} (26)
Taken together, (25) and (26) imply that
E {524_,_1 (we) |ur < ﬂt} >F {sf_,_l (we) |ug > ﬂt} (27)

or equivalently E {s{ﬁrl (ug) lug € U[ec} >F {324+1 (ug) lug € UteXp}, so that CCH
holds for all (T, ) such that 0 <y < u;.M

Now, we proceed to define what it means for bonds to be countercyclically
heteroscedastic overall. CCH is said to hold overall if it also holds when expec-
tations are taken over the entire distribution of recessionary thresholds wu;.

Proposition

In a growing CCAPM economy with v, p,a,& > 0, so that agents are risk
averse, endowment growth and volatility are both positively serially correlated,
and volatility is guaranteed to be positive, CCH holds overall..

Proof

Since vy,a,§ > 0, Lemma 1 implies that the (conditional) mean-inducing
innovation ug is positive for p > 0. Further, v,p,a > 0 guarantees that the

. dri | (w) . . . .
integrand —”?‘h‘“(;') is monotonically decreasing in uy.

Thus, once again 324+1 (u™) > sf+1 (ut) for all pairs (u™,u’) where —u~ =
ut > 0, both due to the larger range [u™, U] when u; > 0, and due to the
larger integrand of s{:_l (u™). Since the economy is growing, p, > 0, and
the recessionary threshold w; is symmetrically distributed about —p, < 0, and
Euy <0 < uy.

By Proposition 1, CCH holds for all pairs (uy,u;) such that uy < U, and
thus for that part of the distribution of w; which lies below wy > 0.

Now, consider the case that the recessionary threshold u; is positive and
greater than the mean-inducing innovation, so that wy > uz > 0. Recall that
for a growing economy, ; is distributed symmetrically about —p, < 0, so that
for each positive recessionary threshold w, > 0, there as an equal magnitude
negative one — (y + €) < 0 which is just as likely (where € > 0). Consider such
a pair of thresholds (— (U + ) ,u:). Begin by considering the large magnitude
innovations. Note that for each pair (—u;,u;) of recessionary thresholds, all
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up < — (uy + €) are recessionary, while all uy > U, are expansionary. Further,
the expected value of the deviation taken over all such large magnitude recession-

ary innovations will be greater than that taken all large magnitude expansionary

. ) ~ dr ) .
imnovations. Formally, uy > 0 and L";'f—ut) monotonically decreasing guarantee

U
that

E 824+1 (Ut) |Ut S — (ﬂt + E) > E 824+1 (Ut) | Ut 2 Ht (28)
N —
recessionary expansionary

for each pair (— (u; +¢€),Ty)

Now, consider small magnitude innovations — (U +¢) < up < Ue. Define
the expected deviation taken over all small magnitude innovations as
E{sfy (w)|— (W +¢e) <uy <} = M (). Recall that — (U + ) is at least
as likely to be the recessionary threshold as is U, so that these small magnitude
innovations are at least as likely to be recessionary as expansionary in a grow-
ing economy. Formally for each pair of equally likely recessionary thresholds

(- (@ +¢),u) -
1
prob{u, € U/} = prob{u, € U7} = 3 for all — (u, —e) <uy <u (29)

Taken together, (28) and (29) imply that for each pair of recessionary thresholds
(— (s +¢),u)

1
E {s{i_1 (ug) |ug € U[ec} = F {sf_H (ug) Jug < —Et} + Q‘M (T:)

V

1
E {Sf—i—l (Ut) |Ut Z ﬂt} + EM (Ht)

E {sf_H (ug) |ug € Upr}

Summing over all pairs of recessionary thresholds such that uw; > u; then yields
that CCH holds for that part of the distribution of T, which lies above u; as
well.A

Thus, CCH holds over the distribution of recessionary thresholds as long as
u is distributed symmetrically about some negative value. The factors favoring
CCH overall are high mean consumption growth rates u,,, as well as positive
coefficients of risk aversion «y, and positive serial correlations in volatility o and
growth rates p. Risk aversion and serial correlation in volatility work together
to induce the asymmetric reactions to positive and negative innovations in the
first place, via the slope effect. Since the magnitude of the (positive) mean-
inducing innovation is increasing in p, greater degrees of serial correlation in
growth rates favors CCH by increasing the size of the range over which the
integral in equation (22) is taken. The simulation results will confirm that the
degree of CCH found in the model is indeed increasing in each of these factors.
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5 Simulation Results

In order to examine whether the degree of cyclical variation in volatilities is
quantitatively significant and on the order of magnitude of the empirically ob-
served values we perform three numerical exercises. First, we stick close to
the theoretical results of the previous section, and focus on real bond returns.
The real bond return simulations confirm the theoretical analysis: the increase
in volatility during recessions is sharply increasing in the amount of ARCH
present in real consumption growth. Also, it is shown to be essential that the
economy be growing, as the theoretical analysis had indicated.

Most available empirical evidence, however, focuses on nominal bond re-
turns. Accordingly, the main quantitative results of this paper focus on nomi-
nal bond returns as well. To this end, the ARCH model is extended to nominal
bonds. It will turn out to be the case that inflation and consumption growth
play analogous roles in the nominal bond return. Thus, in the extended model,
either ARCH in consumption growth or ARCH in inflation or both could lead to
nominal bond returns which are more volatile during recessions. However, due
to the role of the inflation risk premium, it will become essential that risk aver-
sion not be too high. This is borne out in the subsequent numerical example,
calibrated to match US post-war data on real consumption growth and infla-
tion. Although no significant degree of ARCH is found in monthly per capita
real consumption growth, significant ARCH effects are found in the monthly
inflation series. The simulation results show that the ARCH in U.S. post-war
inflation is also capable of generating significantly greater volatility in nominal
bond returns. Moreover, the increase in volatility obtained matches well that
estimated by Schwert for U.S. data.

Finally, a third numerical exercise is performed to check the ARCH model’s
ability to account for increased volatility in equity returns during recessions. It
turns out that only moderate degrees of ARCH in dividend growth are necessary
to generate significant increases in equity return volatility during recessions.

5.1 Countercyclical Heteroscedasticity in Real Bonds

Indeed, numerical simulations confirm that the increase in real bond return
volatility during recessions due to the when it rains it pours mechanism is sig-
nificant. Figures 1 and 2 below provide striking visual evidence. Clearly, the
ARCH-driven real bond returns of upper figure tend to display greater down-
ward reactions, reflecting their greater volatility during low or negative growth
periods. In contrast, the constant variance real bond returns of the lower figure
show balanced upward and downward reactions, reflecting the symmetric effects
of positive and negative innovations to the growth rate.

19



Shor-term Real Bond Returns: ARCH
0018 T T T T

006+ 1

0014

mean o

]

=

=

[
JR——
—

Real Bond Return
=}
2

0.008 - R

0.006 + 1

0.004 1

0.002 - L - L
0 50 100 150 200 250

t

Short-term real bond returns when log consumption growth follows and
AR(1)-ARCH(1) process. Parameters: v = 2.0, a = 0.20, p = 0.24.

Short-term Real Bond Returns: Mo ARCH
0018 T T T T

006 1

LA

mean 4

=

o

=

i
T

0.0z

T
——

=

o

=
L

Shon-term Bond Return

0.008 1

0.008 - L - L
0 50 100 150 200 250

t

Short-term real bond returns when log consumption growth follows a constant
variance process. Parameters: v = 2.0, p = 0.24.

20



5.1.1 Measuring the increase in volatility during recessions

As convincing as the above figures may be, the increase in volatility in the
simulated data must be measured. To compare volatility in recessions and ex-
pansions, I follow Schwert (1989) in regressing the absolute deviation of the

bond return from its conditional mean ‘r{ 41 (ug) — Et_lr{ +1‘ on a constant and

a contraction dummy variable. Contr; takes on the value 1 whenever the inno-
vation at t leads to a recession u; € U/, and the value 0 otherwise:

7{4—1 (ug) — Et,lrf_i_l‘ = B + By - contry + & (30)

Clearly, an estimate BQ which is positive and significant implies that volatility of
the bond return is greater during recessions. Further, the ratio B2 / Bl provides
a measure of the percentage increase in volatility during recessions over expan-
sions. It is this measure which will be referred to as the ”increase in volatility
during recessions” in what follows.

5.1.2 Parameterization to match U.S. post-war data

In order to obtain numerical values for real asset returns one needs to choose
values for six parameters: the unconditional mean and standard deviation of
log consumption growth p,, and o, serial correlation p, serial correlation in the
variances (the ARCH parameter «), risk aversion «y, and the discount factor é.
First, the unconditional moments of the AR(1) process are chosen to match the
unconditional moments of U.S. monthly per capital growth in real consumption
of non-durables and services. Using monthly NIPA data from the Bureau of
Economic Analysis (available from 1967:01 to 2000:09), p, is set to 0.1075%,
and o, to 0.3951%. Risk aversion is chosen to take the values v € {1.0,2.0,4.0}.
These choices are quite conservative, and are well within the range generally
considered in the macrofinance literature.The discount factor ¢ is set to 0.99
: it is easy to see that the discount factor is only a scaling parameter with no
effect on variances, so that there is no point in varying it

The serial correlations p and «, however, are more difficult to pin down.
Wilcox (1992) argues that monthly consumption data have dubious time series
properties: the negative serial correlation measured in monthly consumption
data is likely to be caused by measurement error. Further, these measure-
ment problems make it impossible to test reliably for the presence of ARCH in
monthly consumption data. These rather significant calibration problems with
real data are addressed in two complementary ways: by checking the robustness
of the real results to the questionable parameters and by shifting the focus to
more reliably measured data. In the first approach, p and « are varied widely in
a sensitivity analysis, and then reasonable parameters are found which generate
results which are consistent with the data. In the second approach, the real
consumption problems will be addressed by shifting the focus to nominal data,
and thus more reliably measured inflation series. It is important to emphasize
that the main quantitative results of this paper do not depend upon the properties
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of the unreliable consumption series, but upon the presence of ARCH in more
reliably-measured inflation series.'”

5.1.3 How much ARCH in consumption is necessary?

The ARCH(1) model can indeed account for significant degrees of greater real
bond return volatility during recession. In order to gauge which kind of con-
sumption process would be capable of generating increases in volatility which
are consistent with those of the data, I present more detailed results for that
grid point which is closest to the long data estimates of Schwert (1989).

Table 5.1: Countercyclical Heteroscedasticity in Bond Returns
ARCH(1) versus no ARCH

%As % As
¥ constant variance | ARCH(1)

1.0 1% 27 %

2.0 1% 27 %

4.0 1% 28 %
data

1859-1987 29 %

1953-1987 134 %

Results are summarized in Table 5.1. The table compare the percentage
increase in volatility during recession %As in the canonical constant variance
and the ARCH(1) models when o = 0.20. Clearly, the constant variance model
is mot able to account for any significant increase in volatility of bond returns
during recessions. Detailed simulation results for the constant variance model
with p = 0.24 are presented in Table 5.3.1' ~ gives the coefficient of rela-
tive risk aversion, while the first two columns represent OLS estimates of the
coefficients of regression equation (30), with corresponding White corrected-
for-heteroscedasticity t-values in brackets below. 32 is slightly positive but not
significant, indicating that there is no significant increase in volatility during re-
cession. (Indeed, no combination of parameters was able to generate significant
increases in volatility in the constant variance model.)

In contrast, the ARCH(1) model with oo = 0.20 matches the estimates from
the data quite well. B2 is positive and highly significant, reflecting a significant
increase in volatility during recession. At all levels of risk aversion -y, the increase
in volatility during recessions is within 2% of the data estimates. Thus, only
moderate level of ARCH are necessary to generate volatility asymmetries which
are in line with those found in the data. Moreover, as can be seen from the
t-values in Table 5.2, the increases in volatility are highly significant. In fact,

107y fact, the paper which laid the theoretical foundations for ARCH [Engle (1982)] was
concerned with estimating inflation. Thus, the presence of ARCH in inflation data has been
well-known and accepted for decades.

LT All simulation results are averages over 50 runs of 5000 periods each.
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the increases in volatility were significant for all combinations of a and p, except
those where both « and p simultaneously take their lowest magnitudes of 0.0 to
0.20 and 0.0, respectively.

Table 5.2: Bond Return Volatility in Recession and Expansion
ARCH(1) model

Sexp Srec_sexp S’V’EC %AS
v B4 B B1 + Bo Ba/ By
1.0 | 6.99x10=* | 1.90x10~* | 8.89x10~* | 27 %
[42.47] [6.34]
2 | 1.40x10°3 | 3.77x107* | 1.78x10° 3 | 27 %
[42.67] [6.29]
4 | 2.78x1073 | 7.85x10™* | 3.57x1073 | 28 %
[42.37] 6.55]

Table 5.3: %As gives the percentage increase in the volatility measure
for bond returns during recessions for the ARCH(1) model with p = 0.20
and a = 0.20, for varying coefficients of relative risk aversion 7. Sexp
is a measure of bond return volatility during expansions, while §,¢. is a
measure of bond return volatility during recessions. White adjusted-for-
heteroscedasticity t-values are given in brackets below each estimate.

Table 5.3: Volatility of Bond Returns in Recession and Expansion
Canonical Constant Variance Model

Sexp Srec_sexp S’V’EC %AS
Y B4 B B1 + B Ba/B1
1.5 ] 9.35x10% [ 8.29x10°6 ] 943x10°* | 1%
[72.67] [0.40]
2 | 1.86x1073 | 2.45x10°° | 1.88x10°3 | 1%
[72.26] [0.60]
4 | 3.74x1073 | 4.95x107° | 3.79x1073 | 1%
[72.20] [0.60]

Table 5.4: %As gives the percentage increase in volatility of bond returns
during recessions for the constant variance model, while 7 is the coeffi-
cient of relative risk aversion. Sexp is a measure of bond return volatility
during expansions, and S,.. is a measure of bond return volatility dur-
ing recessions. White adjusted-for-heteroscedasticity t-values are given in

brackets below each estimate.

5.1.4 How important are p and a?

A sensitivity analysis was performed in order to investigate the effects of varying
the troubling parameters p and a widely. Serial correlation p was allowed to
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vary between -0.8 and 0.8, while the ARCH parameter « (serial correlation in
volatility) was allowed to vary between 0.0 and 0.80.

Fortunately, the increase in volatility in real bond returns is quite robust
to choices of p, as can be seen in Figure 1. Thus, unreliable measurement of
serial correlation is not so serious, since serial correlation is not an important
determinant of volatility asymmetries.

In contrast, the ARCH parameter is indeed an important determinant of
volatility asymmetries, confirming the results of the theoretical analysis of the
previous section. As can be seen in Figure 3, the increase in volatility dur-
ing recessions is sharply increasing in «, underlining the crucial role of ARCH
in generating volatility asymmetries. Moreover, even low degrees of ARCH
(ov =0.20) are sufficient to generate significant increases in volatility during re-
cessions. This implies that the amount of ARCH in consumption growth need
not be large in order to account for the greater volatility of bond returns during
recessions. 2

Increase in Waolatility during Recessions: Real Bonds

WOL INCREASE

ALPHA, U RHO

Sensitivity Analysis: The percentage increase in volatility during recessions is
plotted on the vertical axis over a grid of serial correlations p € [—0.8,0.8] and
ARCH parameters o € [0.0,0.8]. Clearly, the increase in volatility is sharply
increasing in a.

12The remaining parameter shown to be important in the theoretical analysis of Section 4
was the mean consumption growth rate p,. In the appendix, results of a sensitivity analysis
on p, are presented. Once again, the theoretical analysis is confirmed: volatility asymmetries
are increasing in p,. However, volatility asymmetries remain significant at all reasonable
growth rates, and only become insignificant for zero growth rates.
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5.2 Countercyclical Heteroscedasticity in Nominal Bond
Returns

Although the discussion of real bonds is illustrative, the overwhelming majority
of bonds traded are nominal bonds. Moreover, Schwert (1989)’s evidence that
short-term interest rates are more volatile during recessions refers to nominal
short-term rates. Thus it is necessary to extend the analysis to take nominal
bonds into account.

A nominal bond paying one unit of currency at date t + 1 is sold for ¢; units
of currency at date ¢t. This implies that the real return on the nominal bond is
equal to:

Rl = o (31)
qu/pe Te+14¢

where p; is the price level at date t, and 7,41 = p—;’[ﬂ is the inflation rate between

dates t + 1 and ¢. Using the Euler equation (4), this implies that in equilibrium

1= E, {MtHRtfH}

where M, is the pricing kernel. Under log utility this implies

. 1

w=p-E{nid == (32)
Te41

where x;41 is the stochastic consumption growth rate. If z;y; and w41 are

jointly log-normally distributed, then one may write [following Hansen and Sin-

gleton (1983)]

logg: = logB—vyEilogziyr — Eylogmg
1
—|—§ ['yQVart log x141 + Varylog meyr + 2yCovy (log x441, log 7rt+1)]
So that the nominal return on a nominal bond Rtffl = —log ¢; may be expressed
as:
i 7
R\ = —logfB+~E logxii1 + Elogmgr — S vart logzir (33)

1
—gvar log 7411 —yCov; (log x4y 1,108 mei1)

inflation risk premium

Clearly, Equation (33) shows that inflation and consumption growth play
analogous roles in the determination of the nominal bond return R{Jrnl Thus,
ARCH in inflation will lead to volatility asymmetries in the same way as ARCH
in consumption growth has been shown to do. The only difference lies in the dif-
fering role of risk aversion: since the inflation terms E; log 7,41 and var; log w41
are not multiplied by any function of 7, the volatility asymmetries due to ARCH
in inflation will not be increasing in risk aversion. On the contrary, due to the
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role of the inflation risk premium, the degree of volatility asymmetry due to
inflation actually turns out to be decreasing in ~.

To see this, assume that the log inflation and real consumption growth rates
follow a bivariate AR(1)-ARCH(1) process with constant correlation between
vary (log z441) and var (logmyyq).!3 This implies that the inflation risk pre-
mium may be written as

—YCQpr \/vart (logwyy1) - vare (logmeyy) (34)

For the empirically relevant case of negative p,o, time-varying inflation risk
premia are especially large (and positive) whenever volatility in consumption
growth or inflation or both are large. This will tend to counteract the effects of
the when it rains it pours mechanism. Whether this inflation premium effect is
able to have a significant impact on volatility asymmetries will depend upon the
level of risk aversion 7 and the correlation p;5. At low levels of risk aversion,
and for the low estimates of p,5 reported below, however, this countervailing
effect will turn out to be of relatively minor importance.

5.2.1 Bivariate AR(1)-ARCH(1) Estimates

To calibrate the model, log inflation and consumption growth rates are estimated
as a joint AR(1) system:

IOg Ti41 _ Cx T Pzz  Pazx IOg Ty + Uz, t+1 (35)
IOg Tt+1 Cr Pzx  Prn IOg g U, t+1
where the disturbances are governed by a bivariate ARCH(1) process with con-
stant correlations as:

Ug,t 0 U%,t in,t
()

Ozt \/ §at awugytfl Uzt Vgt ~ N (0,1) (36)
\/fﬂ + aﬂu%’t,1 *Unt Ut ™~ N (07 1) (37)

Oxnt = OgpOxtOgt (38)

and

On,t

Maximum likelihood estimation of this system yields the following estimates for
the serial correlations:

13The choice of this formulation, first introduced by Bollerslev (1990), is motivated not only
by its tractability. Also attractive is the fact that the constant correlations approach restricts
inflation risk premia to be positive for the empirically relevant case where p;5 < 0. Note that
the more general VECH model of Bollerslev, Engle and Wooldridge (1988) would define the
inflation risk premium as —vy [w + a'Lth’LLﬂ—t], so that the inflation risk premium might become
negative when innovations to the consumption and inflation processes take the same sign.
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Bivariate AR(1)-ARCH(1) Estimates

Parameter Estimate | Parameter Estimate
P -0.2728 Qg 0.0039
P 0.6629 Qo 0.3075
Pom -0.0623 Qgr -0.1960

Note that significant degrees of ARCH volatility and positive serial corre-
lation are found in the log inflation series. In contrast, monthly consumption
growth continues to exhibit (probably spurious) negative serial correlation and
no statistically significant degree of ARCH. Thus, in nominal bonds, the volatil-
ity asymmetries may be fully attributed to ARCH in inflation. These bivariate
results are consistent with the results of univariate ARCH LM tests carried out
on the same data. ARCH LM tests find evidence of significant ARCH effects
in inflation, but not in consumption growth. Remaining parameters for the
AR(1)-ARCH(1) process were chosen by exploiting properties of autoregressive
processes, to ensure that the constants (¢, cq,&,, &, ) are consistent with both
the estimated serial correlations and the unconditional moments (g, fiy, O, )
reported in the table below.

Unconditional Means of Log Inflation and Consumption Growth

log ; log 7,

Ha Oz Mz On
0.0011  0.0040 | 0.0041 0.0030

5.2.2 Simulation Results: Nominal Bonds

The ARCH(1) model can indeed account for significantly greater nominal bond
return volatility during recessions, as can be seen from Table 5.4 below. The
increase in volatility during recessions ranged from 32% to 47%, and is somewhat
greater than that reported by Schwert (1989) for the long data, as can be seen
from the last column of Table 5.4 above. Moreover, this increase is highly
statistically significant, as can be seen from the t-values on the estimates of (5.
The simulation results of Table 5.4 also confirm the theoretical prediction that
the increase in volatility would be decreasing in risk aversion . This is due to
the inflation risk premium, which is not only increasing in -y, but also serves to
dampen the volatility asymmetries.
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Table 5.4: Nominal Bond Volatility in Recession and Expansion
ARCH(1) Model

Sexp STec_Sexp Srec %AS

Y B4 B B1+ By Ba/ B4

1.5 2.11x1073 [ 9.87x10~* | 3.10x107=3 | 47 %
(62.24] [17.40]

2.0 3.86x1073 | 1.61x10°3 | 5.57x10°3 | 42 %
[76.57] [19.12]

4.0 1.16x1072 | 3.73x1073 | 1.53x1073 | 32 %
[85.50] [16.50]

data
1859-1987 29 %
1953-1987 134 %

Table 5.4: %As gives the percentage increase in volatility of nominal bond
returns during recessions in the ARCH(1) model with varying risk aversion
coefficients . A measure of the volatility of returns during expansions is
provided by s and s"®¢ measures the volatility of returns during reces-
sions. White adjusted-for-heteroscedasticity t-values are given in brackets
below each estimate.

5.3 Countercyclical Heteroscedasticity in Equity Returns

Returning to the real model, the results are similarly positive for equity re-
turns. Time-varying second moments also lead to significantly greater degrees
of volatility during recessions in equity returns. Again, the when it rains it
pours mechanism greatly increases the amount of CCH which the model can
account for. To see this, compare the degree of CCH in the constant vari-
ance model (middle column of Table 5.5) to the degree of CCH in the ARCH(1)
model, shown in the far right column of Table 5.5. [For details on the simulation
method, see Appendix C.]

Table 5.5: Countercyclical Heteroscedasticity in Equity Returns
ARCH(1) versus no ARCH

%As %As
v | no ARCH | ARCH(1)
1.5 68 % 115 %
2 59 % 94 %
4 45 % 37 %

data | 1859-1987 61 %
1920-1952 234 %
1953-1987 68 %
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Table 5.6: Equity Return Volatility in Recession and Expansion

ARCH(1) model

Sexp STec_Sexp Srec %AS

o b1 B By + By | Ba/By

1.5 | 0.00200 | 0.00229 | 0.00429 | 115 %
39.90] [23.29)]

2 | 0.00198 | 0.00187 | 0.00386 | 94 %
[41.86] [20.19]

4 | 0.00245 | 0.00088 | 0.00333 | 37 %
[41.85] [7.62]

Table 5.6: %As gives the percentage increase in volatility of equity re-
turns during recessions in the ARCH(1) model with varying risk aversion
coefficients y. An estimate of the volatility of equity returns during expan-
sions is provided by s®P and s"®¢ is an estimate of the volatility of equity
returns during recessions. White adjusted-for-heteroscedasticity t-values
are given in brackets below each estimate.

At low levels of risk aversion, the estimated increase in volatility during
recession (3, is positive and highly significant for both models.'* However, the
degree of CCH generated by the ARCH(1) model is more than twice as great
as that generated by the constant variance model: 140 % in the ARCH(1) case,
as opposed to 68 % in the constant variance case for v = 1.5. These values
compare favorably with those estimated by Schwert (1989) for U.S. data and
reported in Table 5.11 below.

Table 5.7: Equity Return Volatility in Recession and Expansion
Constant Variance Model

Sexp S'r‘ec_sexp Sv“ec %AS
o 531 By B+ By | Ba/By
1.5 [ 0.00282 | 0.00192 | 0.00474 | 68 %
[38.25] [26.08]
2 | 0.00347 | 0.00206 | 0.00553 | 59 %
[38.53] 25.98]
4 1 0.00489 | 0.00219 | 0.00708 | 45 %
38.83] 21.42]

Table 5.7: %As gives the percentage increase in volatility of equity returns
during recessions in the constant variance model with varying risk aversion
coefficients 7.

1M That some degree of CCH is also found in non-ARCH equity returns is not surprising.
Recall that it was the non-linearity of the ARCH bond return which was driving the CCH
result there. Since the non-ARCH equity return is also non-linear, it is plausible that it should
also display some amount of CCH.
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That the constant variance model also exhibits some degree of cyclical vari-
ation in equity return volatility is not surprising, when one considers that non-
linearities were seen to be driving the CCH in bond returns. Since constant-
variance equity returns are already non-linear, they too can be expected to
display some degree of cyclical variation in their volatility. That ARCH(1) eq-
uity returns display even greater degrees of CCH reflects the added degree of
non-linearity contributed by the time-varying second moments.

Table 5.8: Increase in Equity Return Volatility during Recession
U.S. monthly data [Source: Schwert (1989)]

period | 1859-1987 | 1859-1919 | 1920-1952 | 1953-1987
%As 61% -6% 234% 68%

5.4 CCH and Equity Premia

The equity return CCH results should, however, be treated with some of caution.
To see why, first note that the degree of CCH which both the ARCH(1) and the
constant variance model can generate is decreasing in the degree of risk aversion.
This, in turn, may be related to the relationship between risk aversion and risk
premia.

To be more precise, equity returns may be written as the sum of the bond
return and the equity risk premium as

Tiy1 = 7"{+1 + (T§+1 - 7"[+1) (39)
———

risk premium

Bond returns rf 41 are decreasing in the variance of the underlying asset (due
to precautionary effects). Risk premia, on the other hand, are increasing in the
volatility of the underlying asset. The more variable the stream of payoffs, the
more a risk averse agent will have to be compensated for holding it. The total
effect is ambiguous.

For low levels of risk aversion, equity returns turn out to be highly correlated

with bond returns (corr <R§, RI +1) ~ 0.98), implying that the total effect has

equity returns decreasing in the volatility of the underlying asset. Recalling
the theoretical discussion of Section 4, it is precisely this negative relationship
between volatility and returns which allows to generate the large degrees of CCH
documented in Table 5.9. The tight correlation between bond and equity returns
is also reflected, however, in the extremely small equity premia generated by
the power utility model studied here at low levels of risk aversion. Furthermore,
when risk aversion in increased to moderate levels (v = 4.0), the CCH generated
by the power utility model begins to evaporate. Thus, one might be tempted
to suspect that the greater volatility of equity returns in recession is intimately
linked to the extremely low - and counterfactual - equity premia associated with
the basic Lucas(1978)-Mehra/Prescott (1985) model.
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It turns out that this suspicion is unfounded. In Ebell (2000a) I check
whether it is possible to generate endogenously both large equity premia and
more volatile equity returns during recessions. In particular, I extend Cochrane
and Campbell (1999)’s habit persistence model to include AR(1)-ARCH(1) con-
sumption growth. It turns out that this habit-plus-ARCH model can indeed ac-
count for both realistic equity premia of 6.05 % per annum and equity returns
that are about 118% more volatile during recessions.

6 Generalization

It is clear that the analytical results presented in section 4 rely primarily on
the fact that the endogenously generated AR(1)-ARCH(1) bond return can be
expressed as a quadratic function of the innovation. This observation moti-
vates a generalization to all endogenous variables which may be expressed (or
approximated) as quadratic functions innovations.

Endogenous variables that are quadratic in the innovations react asymmet-
rically to positive and negative innovations. Thus, to the extent that a given
endogenous variable may be expressed (or approximated) as a quadratic function
of the innovation, it should also exhibit asymmetric volatility. More precisely,
say that some endogenous variable y;1 may be expressed (or approximated) by
a quadratic equation in the innovation to its driving process w;. In particular,
consider an endogenous variable y;, which may be expressed as

yr = a+ bwy + cw} (40)
where p
d—i = b+ 2cw, (41)

Equation (41) gives the generalized version of the ARCH line of Section 4.
Its intercept will be determined by b, while its slope will be determined by 2c.
Figure (8) shows the reaction in y, to an innovation w; when the endogenous
variable reacts positively to the innovation wy (b > 0), but negatively to variance
¢ < 0. In this case, the shaded region under the % line between w~ and
zero is clearly greater than that between w' and zero, reflecting the stronger
reaction of y;11 to negative innovations. Thus, y;4+1 behaves like a bond return,
and volatility will tend to be greater during recessions, a tendency which will
be reinforced by the fact that the (conditional) mean-inducing innovation will
be positive for b < 0 and ¢ > 0, as stated in the proposition below.

Definition

The (un)conditional mean-inducing innovation (W) Wy is the smallest mag-
nitude innovation which causes y; to take on its (conditional) mean value.

Lemma

wi > 0 and w; > 0 whenever b and c are of opposite signs.

Proof

See Appendiz D.1
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If, on the other hand, the endogenous variable reacts positively both to vari-
ance (¢ > 0) and to the level, the volatility asymmetry is likely to be reversed.
To see this, note that in Figure (9), the slope of the ddytTtl line is positive.
Thus, the area under this line will be greater for w™ than for w—, and volatil-
ity will tend to be greater during expansions. The fact that the (conditional)
mean-inducing innovation is negative reinforces the tendency toward procyclical
heteroscedasticity. This tendency will be reinforced by the fact that the (condi-
tional) mean-inducing innovation will be negative when b, ¢ > 0., by the Lemma
below.

Lemma

w < 0 and w)* < 0 whenever b and c are of the same sign.

Proof

See Appendiz D.

7 Conclusions

The main theoretical contribution of this paper has been to show that intro-
ducing time-varying second moments into a consumption CAPM framework can
induce cyclical variation in asset returns. In particular, positive serial correlation
of growth rates and variances in a growing CCAPM economy lead to counter-
cyclical heteroscedasticity in bond returns. The main quantitative contribution
has been to show that the degree of countercyclical heteroscedasticity generated
by the model is quantitatively significant and empirically relevant. The increase
in volatility of nominal bond returns in the simulated model is similar to that
found in the data when the model is calibrated to match US post-war data on
consumption growth and inflation. Also, the increase in equity return volatility
matches well that found in the data.

Furthermore, the when it rains it pours mechanism has the potential to ex-
plain cyclical variation in the volatilities of more general economic variables.
Although this paper concentrates on explaining countercyclical heteroscedas-
ticity in financial markets, the mechanism is in no way specific to financial
markets. All sorts of forcing processes may have time-varying second moments,
and ARCH driving processes may be integrated into any number of models.
Moreover, there are no limits per se on which type of variables are generated
endogenously. As shown in Section 6, volatility asymmetries may arise in any
variable which may be expressed or approximated as a quadratic function of
the innovation to the driving process. As an example, Ebell (2000b) shows how
ARCH in the productivity shock of a simple RBC model can lead to production
growth which is significantly more volatile during recessions, thereby further
broadening the set of stylized facts the when it rains it pours mechanism can
account for.
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Appendix A Mean-Inducing Innovations I: ARCH Bond Returns

The mean-inducing innovation u; is that which induces the bond return to
be exactly equal to its mean.

Definition

The (un)conditional mean-inducing innovation (uy) u; is the smallest mag-

nitude innovation which causes 7{4—1 (ut) to take on its (conditional) mean value.

7{4—1 (uy) = Erg—i—l
7"[+1 () = Etflr{H

Assume throughout that ~,a,& > 0, so that agents are risk averse, and
volatility is positively serially correlated and never expected to be negative.

Appendix A.1
No-ARCH case I: Conditional mean-inducing innovation

In the no-ARCH case, the innovation u; which induces the conditional mean
bond return Et_lr{ 1 satisfies:

2
(@) = —logd+y[c(1+p)+pPlogay s + ] - 2o
2
= —logé+~[c(l+p)+p*logz_q] — %Ui =Bl

Ei_1log i
so that the mean-inducing innovation is clearly
ﬂt =0

The idea is simple: whatever has happened up to and including date t — 1, the
conditional expectation of next period’s bond return is simply that which results
when the next period’s innovation takes on its (un)conditional mean value of
ZEro.
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Appendix A.2
ARCH case II: Conditional mean-inducing innovation

In the ARCH case, the innovation u; which induces the conditional mean
bond return Et_lr[ 11 satisfies:
7

5 [£ + aﬂf]

rly (@) = —logd+y [c(1+p) + p*logzs 1 + pus) —

2
- —log6+'y[c(1+p)+p210gxt,1]—%[{Jr p2+a) (§+auffl)]

E,_1logx; 41 vary 1 log xiq
= Etflrgﬂ
Rearranging terms, this implies that the mean-inducing innovation satisfies the
following quadratic equation:
~ ’Y2 ~\2

—c (uf_y) =yt + o) =0 (42)

where
c (u%ﬁl) = (p2 +a) (E+ auf,l) >0 for all u?

Making use of the quadratic formula, one may obtain the roots of equation (42)
as

Y= \/p2 +92a-c(uf,)
Uy =
v-c (U%—1)
Which of the two roots is of smaller magnitude will depend upon the sign of p.
The following two lemmas derive the conditional mean-inducing innovation for
positively and negatively serially correlated growth, respectively.

Lemma
For p > 0, the conditional mean-inducing innovation u; is given by

(43)

ety eatac (i)
Uy = 2

>0
vY-c (utfl)

for all values of u?_,.

Proof

Consider first the case when consumption growth is positively serially cor-
related. The two roots may be expressed as

—p - \/p2 +7%a-c(uf )

U1 = Y <0

B —p+ \/p2+v2a-C(U?_1)

U2 = D) >0
v-c (Ut—1)
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where negativity and positivity of each root makes use of the observation that
\/p2 + 72~ ¢ (uf_y) > p. This, together with the fact the ¢ (logzy_1) > 0 for

all u?_,, also makes it easy to see that [t 2| < |uz1| so that the conditional
mean-inducing innovation is:

-t \/p2 +7%a-c(uiy)

U = >0
! ’Y'C(U%—l)

Lemma
For p < 0, the conditional mean-inducing innovation u; is given by

_ cp R eatacc (i)

Uy =
! vY-c (ugfl)

<0

for all values of u?_;.

Proof

Now consider the case when consumption growth is negatively serially cor-
related. The two roots may be expressed as

—p— \/p2 +72a-c(ui,)

U1 = P (u%_l) <0
—p+ \/p2 +92%a-c(uf )
atyg D) >0
vy-c (utfl)

where negativity and positivity of each root makes use of the observation that
\/p2 +72a- ¢ (u?_y) > —p. This, together with the fact the ¢(logzy—1) > 0

for all u?_,, also makes it easy to see that [u; 1] < |tt,2| so that the conditional
mean-inducing innovation is:

o\ e e (i)

Y- C (u%ﬁl)

Uy =

<0

Appendix B
Sensitivity Analysis on Mean Consumption Growth

According to the theoretical analysis of Section 4, the greater is the average
growth rate of the economy, the more strongly negative a shock must be (on
average) in order to throw the economy into recession. Thus, the greater is p,
the more likely are recessions to be associated with the precisely the kind of large
negative innovations which favor CCH. Table B1 illustrates this point: when the
economy is not growing, there is no significant degree of CCH. Furthermore, the
degree of CCH is clearly increasing in the unconditional mean growth rate of
the economy ., confirming the analysis in Section 4.
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Table B1: Bond Return Volatility in Recession and Expansion
ARCH(1) Calibration with v = 1.5 and Varying y,,

Sexp S'r‘ecisexp S'r‘ec %AS

My B4 Ba By + Bs Ba/ B4

0.00 9.97x107% | 7.29x107% | 1.00x10~3 | 0.8 %
[41.90] [0.22]

0.0016 9.26x10~* | 3.01x10~* | 1.22x1073 | 32 %
[42.08] [6.93]

0.0032 | 9.48x10~* | 3.67x10"* | 1.31x10°3 | 39 %
[40.60] [6.00]

0.0063 | 9.71x107% | 5.30x107% | 1.44%x10°3 | 55 %
[37.95] [4.85]

1859-1987 29 %

Table Bl: %As gives the percentage increase in volatility of bond re-
turns during recessions in the ARCH(1) model with v = 2.0 and varying
unconditional mean monthly growth rates g ,.An estimate of the volatil-
ity of bond returns during expansions is provided by s*P, and s"°¢ is
an estimate of the volatility of bond returns during recessions. White
adjusted-for-heteroscedasticity t-values are given in brackets below each

estimate.

Appendix C
Numerical Approximation of Equilibrium Equity Returns

In order to obtain the equilibrium sequence of equity returns, we must first

find the sequence of price-dividend ratios {Z—f} which satisfies the Euler equa-
")t

tion (5). This may be achieved by iterating on equation (5) using the pa-
rameterized expectations approach (PEA) developed by Marcet and Marshall
(1994). This algorithm finds a parameterization of expectations ¥ (xt, u?; w) =
E; x;f (s—ii—l + 1) = %Z_: which is consistent both with the exogenous growth
rates and endogenous price-dividend ratios. That is, the algorithm first assumes
some functional form (in our case an exponential one) by which values of the
state variables (xt, u%) are transformed into expectations:

v (l"t, uZ; 1/1) =1 exp {¢2$t + 1/1371%}

Now the series of price-dividend ratios generated by these expectations
v (It, CriRE 1/)) can be calculated as

Z—j () = B, exp {thpa, + ¥3u?}
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Next, the consistency of {% (1/})} needs to be checked. This may be done by
t t

imposing rational expectations, and then finding the RE price-dividend ratios

e Pe g {xl’ <p”1 (W) + 1)} 4
t t+1

dt RE dt+1

Loosely speaking, a fixed point in this algorithm is then the series {% (1/))}
t t

which implies itself. In particular, {Z—i} is a PEA solution to the Euler equation
if non-linear least squared regressions of the equation

1p;

= =(;exp {C2$t+C3U%}
6di pE

produce estimates (21,22,23) which are close enough to those values which
generated the price-dividend ratios in the first place, namely (1, ¥y, ¥3).

From the sequence of equilibrium price-dividend ratios, it is easy to recover
the sequence of equilibrium equity returns as

e 51’5+Il + 1
Tipl = Te41 - — 5 — (45)
d
Appendix D

Mean-Inducing Innovations II: General Case

Lemma

The unconditional mean-inducing innovation W}y is positive whenever b and
c are of opposite signs, and negative whenever b and ¢ have the same sign.

Proof

Recalling that By, = a + cEo?, it is clear that

a+cE’(rZ) =a+ bwy +c(@f)2

so that
—CcEo? 4+ bW + c(@¥)* =0 (46)

Making use of the quadratic formula, one can easily see that

= b2+ 4c2FEo?,

bt 2cEo2,
so that
—u b+ /b% 4+ 4c2Eo?2,
Y1 = 2cEo2 (47)
—u b— /b?+4c2Eo?2,
wt,2 = ZCEO_Q (48)
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Which of these two roots will have the smaller magnitude will depend upon the
signs of b and c. This makes for 4 cases to consider:

Case Ia: b > 0, ¢ < 0: This was the case of the bond return. First note that
b > 0 implies that b < /b2 + 4c2Ec2,. This, together with ¢ < 0, implies that
wi'y <0 and wi'y > 0. Furthermore, |@}f)2| < |{Ef’1|, so that the mean-inducing
imnovation is given by:

e b= /D2+42Eo2,
>0

L 2cEc2,

Case Ib: b < 0, ¢ > 0 This is the case of a variable which reacts negatively
to an innovation’s level, but positively to its variance. Now, b < 0 implies
that —b < \/b? +4c>Eo?,. This, together with ¢ > 0, implies that wi'y > 0,
while wi'y < 0. It also follows that ‘{UZI| < ‘@}/‘)2|, so that the mean-inducing
imnovation is given by

b+ PP +4PES2
>0

w, —
t 2cEc2,

Case Ila: b < 0, ¢ <0 This is the case of the bond return when growth is neg-
atively autocorrelated. As in Case Ia, b < 0 implies that —b < \/b?> + 4c?Ec?,.
This, together with ¢ < 0, implies that wy; < 0 and wyy > 0. Furthermore,

‘@}/‘)1| < |@§fz|, so that the mean-inducing innovation is given by:

—w b+ /D2 +4c2Eq2
wy = <0

¢ 2cEo0?,,

Case Ilb: b > 0, ¢ > 0 This is the case of a variable which reacts positively
both to an innovation’s level and its variance. Now, as in Case Ib, b < 0 implies
that b < \/b? +4c?Ec?. This, together with ¢ > 0, implies that wy; > 0,
while wi'y < 0. It also follows that {@Zzl < {@}f)ﬂ, so that the mean-inducing
imnovation is given by

we =
t 2cEo2,

—w b= /b?>+4cPEc?
<0

|

Lemma

The conditional mean-inducing innovation wy is positive whenever b and c
are of opposite signs, and negative whenever b and ¢ have the same sign.

Proof

Recalling that Ei_1y; = a + cEy_102

w,ts 1t 1s clear that

a+ cE, 102 a+bw +c (@t)z

w,t =

so that
—cEy_102%  + by + ¢ (@)% =0 (49)

The rest of the proof is completely analogous to that of the previous Lemma.l

40



Figure 1
ARCH and Constant Variance Bond Returns
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Figure 2
Reaction of Bond Returns to Innovations u(t)
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Figure 3
Absolute Deviation of Constant Variance Bond Return due to u(t)
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Figure 4
Absolute Deviation of Constant Variance Bond Return due to u+ and u-
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Figure 5
Absolute Deviation of ARCH Bond Return from rf(0)
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Figure 6
Absolute Deviation of ARCH Bond Return due to u+ and u-
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Figure 7
Recessionary and Expansionary Innovations

Figure 8
Reaction of yi+; to Innovations when b>0 and c<0
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Figure 9
Reaction of yi; to Innovations when b >0and ¢ >0
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Figure 10
Mean Inducing Innovation
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