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1. Introduction

Numerous dynamic stochastic general equilibrium (DSGE) macroeconomic models now

allow for variation in the depreciation rate of capital. One approach treats the depreciation

rate to be an endogenous variable such that the choice to use capital intensively or to spend

little on maintenance and repair results in high depreciation [Greenwood, Hercowitz and

Huffman (1988); Burnside, Eichenbaum and Rebelo (1996); King and Rebelo (2000) for the

former; McGrattan and Schmitz (1999), Collard and Kollintzas (2000) and Licandro and

Puch (2000) for the latter]. Procyclical variation in capital utilization amplifies the effect

of a technology shock on output. Thus, the variance of technology shocks can be lower in a

model with variable capital utilization, with fewer implied occurrences of technical regress.

When the depreciation rate is a function of maintenance and repair, the assumption is that

each unit of capital is matched with labor input that is geared toward either production

or capital maintenance and repair. In this case, technology shocks have an income and a

substitution effect on the rate of depreciation. The substitution effect is positive because

a positive productivity shock causes goods production to be relatively more efficient than

maintenance. The income effect is negative because a positive productivity shock reduces

the labor input needed to produce a given quantity of consumer goods, freeing labor for

alternative activities including maintenance. In both of these scenarios, variation in the

depreciation rate is a means and not an end. Endogenous depreciation equates margins

at less than full capital utilization or introduces a role for large, countercyclical expendi-
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tures on maintenance and repair. In this way, endogenous depreciation serves to amplify

and augments the persistence of the effects of technology shocks on output. But, fully

endogenous depreciation does not allow for random changes in the depreciation rate as an

independent source of economic fluctuations.

Alternatively, the depreciation rate can be stochastic in DSGE models, putting de-

preciation shocks on a par with technology shocks as fundamental driving forces behind

macroeconomic fluctuations. At the same time, one interpretation of exogenous variation in

the depreciation rate is that it serves as a shorthand approach to complicated endogenous

scrappage decisions that are hard to build into a DSGE model. For example, a high rate

of obsolescence of energy-intensive capital in the face of the 1970s oil price shocks might

very well have been an endogenous response to a particular type of shock. Rather than

add a lot of structure, a modeler might choose to treat such an episode as a surprise and

temporary exogenous increase in the depreciation rate. Moreover, one might truly believe

that variation in the depreciation rate is mostly stochastic and not a function of choice

variables. Ambler and Paquet (1994) introduce stochastic depreciation as a persistent au-

toregressive process much like technology. Such depreciation shocks help the model match

an important feature of U.S. labor markets that elude real business cycle (RBC) models:

hours and productivity have only a small positive correlation, rather than the large positive

correlation implied by the standard RBC model that relies solely on technology shocks.

The reason why Ambler and Paquet’s (1994) autoregressive depreciation rate leads to

a low hours-productivity correlation is somewhat ambiguous, however. A standard RBC
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model with a constant rate of depreciation can imply a low hours-productivity correlation

if the depreciation rate is sufficiently high, as shown in Figure 1. Nevertheless, a quarterly

rate of depreciation above 3 percent is generally considered implausibly high, so the stan-

dard RBC model cannot generate a low positive correlation between hours and productivity

at empirically plausible parameter values. Ambler and Paquet’s (1994) autoregressive pro-

cess generates annual depreciation rates that fluctuate between roughly 4 and 14 percent.

Thus, especially in light of Figure 1, Ambler and Paquet’s autoregressive process does not

firmly establish that stochastic fluctuations limited to low, empirically plausible rates of

depreciation can account for a low hours-productivity correlation.

This article seeks to demonstrate that stochastic fluctuation of the depreciation rate

within a narrow band at a moderate level is by itself able to generate a low hours-

productivity correlation, without the occurrence of high rates of depreciation. In this

way, we reinforce Ambler and Paquet’s point that stochastic depreciation induces a sub-

stantial reduction in the comovement of hours and labor productivity. The intuition is that

a random increase in the depreciation rate causes hours worked and labor productivity

to respond in opposite directions. When the depreciation rate is in the high state, the

capital-output ratio begins to fall, so labor hours are substituted for capital. Consequently,

hours and labor productivity move in opposite directions. This source of negative correla-

tion between hours and labor productivity can counteract the positive correlation implied

by technology shocks to result in a low correlation between hours and productivity that

matches the data.
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To limit the range of fluctuation and the highest level of the depreciation rate, we

model stochastic depreciation rates as the outcome of a two-state Markov switching process.

Provided that the high depreciation state lies below the region where the level of the

depreciation rate affects the hours-productivity correlation, we can be sure that any effect

of stochastic depreciation on the hours-productivity correlation is coming from random

changes in the depreciation rate, as opposed to realizations of a very high depreciation

rate. In fact, our results show that the high and low depreciation states do not have to

be very far apart to generate low hours-productivity correlations at empirically plausible

rates of depreciation.

This article also makes an important contribution to the methodologies used in DSGE

models to implement nonlinear decision rules for Markov switching parameters. The ap-

proach followed by Gong (1995) to Markov switching was to calculate linear decision rules

for each Markov state and then weight the rules by their probabilities. Andolfatto and

Gomme (2001) introduce a Markov switching money growth rate and use a grid-based

approximation to the nonlinear decision rule functions. As we discuss in Section 4, how-

ever, the grid-based approach can only be applied to relatively simple models with a very

small number of state variables—three or less. Instead, we apply Judd’s (1998) projection

method of polynomial approximations to the nonlinear decision rules. The projection re-

mains feasible for DSGE models with ten state variables or more. Without such methods,

research involving Markov-switching parameters or other forms of nonlinear decision rules

would be very limited in terms of dimensionality.
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The article is organized as follows. Section 2 motivates our use of a Markov switching

process for a time-varying depreciation rate. Various uncertainties concerning the persis-

tence of depreciation are highlighted. Section 3 presents the baseline RBC model. The

same section discusses calibration strategy. The solution procedure with nonlinear decision

rules is outlined in Section 4. Section 5 presents the main results in the form of sensitivity

analysis and impulse responses. Section 6 concludes.

2. Difficulties in Calibrating Time-Varying Depreciation

Empirical evidence on time-varying depreciation rates is scant for the U.S. economy. The

accounting methods used for the construction of national accounts data typically assume

constant depreciation rates. Hence, evidence on time-varying depreciation often comes

from sectoral data that are not necessarily representative of the economy as a whole.

In one of the few empirical studies on estimating time-varying depreciation rates, Abadir

and Talmain (2001) use annual observations on real net investment and on real gross

investment to calculate the macroeconomic depreciation rate from their implied capital

stock measure.1 They find that depreciation rates differ substantially across countries

for the period 1970 to 1996. The estimates for the United States suggest the following

1Their data driven procedure rests on the assumption that at one point in the sample the depreciation

rate, δt, remains constant for two periods, i.e. δt+1 = δt. This assumption allows them to derive an estimate

for the implied capital stock. Through a series of identities they are then able to obtain an estimate for

the depreciation rate.
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characteristics: annual depreciation rates exhibit strong persistence; they fluctuate in a

relatively narrow (trendless) band and they do not appear to be strongly procyclical. This

suggests that capital is often destroyed or scrapped through factors that are independent

of capital utilization. Innovation that leads to obsolescence and scrappage is not always

procyclical. In the service sector, which is heavily reliant on computers, the technology

cycle of microprocessors—popularly known as Moore’s law—is independent of the business

cycle. Capital is also destroyed through natural disasters and rendered obsolete by large,

unexpected relative price changes.

Our strategy for modeling time-varying depreciation is to assume that depreciation is

driven by a Markov process that is independent of the technology shock, as the empirical

study of Abadir and Talmain (2001) suggests.2 equation. We experiment with conditional

means for annual depreciation that are all strictly lower than 10 percent and consider

various degrees of persistence in the Markov process.

3. Model Structure and Calibration

The model is a standard DSGE model with indivisible labor and no artificial frictions

aside from a shopping-time motive for holding money. The model economy is populated

2In a similar setup with independent shocks, Bernanke, Gertler, and Gilchrist (1999) and Carlstrom

and Fuerst (2000) consider the influence of adjustment and agency costs by allowing for time variation in

the cost of capital investment in terms of foregone consumption.
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by a large number of infinitely lived agents whose expected utility is defined by

E0

∞∑
t=0

βt(ln(ct) + θln(1− ht) + θ
Lt

L̂
[ln(1− L̂− ht)− ln(1− ht)]), (1)

where β is the time discount factor; ct is private consumption; θ is a positive scalar that

determines the relative disutility of non-leisure activities; ht is shopping time, Lt is expected

work time under a Rogerson (1988) employment lottery; L̂ is the indivisible time spent at

work for those working [Hansen (1985)].3

Aggregate output, Yt, is assumed to depend on the total amount of capital, Kt, and on

total hours of work, Nt, with labor-augmenting technological progress at the gross rate λ

Yt = eztKα
t (λtNt)

1−α. (2)

The shopping-time motive for holding money is really not distinct from a cash-in-

advance constraint. Many cash-in-advance models have a cash good and a credit good.

If one assumes that buyers have imperfect advance knowledge of which sellers require cash

and which offer credit, then holding more money results in less time lost from mistaking

a cash-only seller for a credit-offering seller. The shopping time technology specifies the

amount of time that must be spent shopping within period t as a function of consumption

ct relative to the amount of real money balances, mt. The shopping time technology follows

the specification given in King and Wolman (1996):

ht = κ
mt

Ptct
+ ξ1/ν(

ν

1− ν
)(
mt

Ptct
)
ν−1
ν , (3)

3We follow the general practice, where lower case letters are used to denote individual choices and upper

case letters denote economy-wide per-capita quantities.
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where κ defines the finite satiation level of real cash balances, m = ξcκ−ν when the nominal

interest rate is zero. A time constraint restricts leisure, shopping time, and work to sum

to one:

lt + ht + nt = 1. (4)

The technology shock, zt, is assumed to follow an AR(1) process with the following law

of motion:

zt = ρzt−1 + εt, εt ∼ N(0, σ2
ε ). (5)

The technology shock, εt, is drawn from a normal distribution with mean zero and standard

deviation σε.

The capital stock evolves according to

kt+1 = (1− δSt)kt + it, (6)

where it is the chosen level of investment and δSt is the rate of depreciation of capital,

which is assumed to follow a two-state Markov process that is independent of zt.
4 The

installation of capital takes one period, making the time t+ 1 capital stock predetermined

at time t, but there are otherwise no installation or adjustment costs.

The aggregate resource constraint of the economy is given by

yt = ct + it. (7)
4Without imposing a positive correlation between technology and the depreciation rate, this model

does not significantly reduce the probability of technical regress, as time-varying capital utilization can,

according to Burnside, Eichenbaum, and Rebelo (1996) and King and Rebelo (2000).
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We close the model with an interest rate rule for monetary policy that is a function of

lagged inflation and an inflation target:

∆rt+1 = 1.2[πt − π∗] + ηt. (8)

Here π is inflation, π∗ is the inflation target and ηt is an i.i.d. error term. Deviations from

the inflation target are corrected with a feedback component set to 1.2.

Calibration for the Baseline Model

The model is calibrated to the parameter values listed in Table 1. The rate of time

preference and the Cobb-Douglas production function coefficients are standard. The val-

ues for indivisible labor are taken from Li (1999). The parameters in the shopping-time

technology (ν = 0.75 and ζ = 0.04875) are taken from King and Wolman (1996). The

autoregressive coefficient for the technology process, z, is set to 0.95. The standard devi-

ation of the technology shocks is set at σρ = 0.0045 to match the variance of output in

the data when depreciation switches as follows. In the extreme case, the depreciation rate

switches between 0.015 in the low state and 0.025 in the high state. These values imply an

annual depreciation rate between 6 and 10 percent. The low state value is consistent with

Stokey and Rebelo (1995) and the high state value with King and Rebelo (2000). Much of

our analysis works with a quarterly depreciation rate set to 0.21, which is consistent with

values used by Gilchrist and Williams (2000). The persistence for the two states is defined

by pδ = 0.90 and qδ = 0.85.

4. Numerical Implementation
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Two features of the dynamic general equilibrium described above make use of tradi-

tional solution techniques problematic. Since Markov switching is present in the model’s

parameters, there is no model steady state to serve as a center of approximation. Even in

the absence of shocks to technology or monetary policy, switches in other model parameters

will prevent the economy from approaching a steady state value. In addition, the values

of these switching parameters in different states are of crucial importance in determining

the decisions of agents. Thus the switching cannot simply be “turned-off” to provide a

deterministic steady state. As a secondary problem, in cases where agents do not have

full information as to the current value of a Markov switching parameter, that is, cases

where the parameter is not directly observable, the agent’s decisions have to depend on

probabilistic beliefs concerning the current parameter value. This necessitates the intro-

duction of the agent’s beliefs as state variables in the agent’s optimization problem, and

these beliefs have very nonlinear transitions through time.

In light of these problems, we use a solution technique first discussed by Judd (1998),

called the projection method. The idea is to approximate the agent’s decision rules by

polynomials that “nearly” solve the agent’s optimization problem in a way made formal

below. Using polynomials allows us to represent the approximate rules in a very compact

form. While the number of coefficients in a high-degree polynomial in many variables can

be somewhat large, this number is nowhere near the number of values that must be kept

track when using grid-based methods. For example, a second-degree polynomial in three

variables requires 10 coefficients for its specification. A grid-based approximation to a
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function in three variables using five grid points in each dimension would require specifying

53 or 125 parameters. Grid-based approximations to a function of a slightly larger number

of state variables—say eight state variables—are impossible for even sparse grids.

To apply the projection method, we express the agent’s optimization problem in the

following form:

Max
ut

E0

[ ∞∑
t=0

βtr(xt, ut, Dt)

]

subject to the constraints

xt+1 = g(xt, ut, Dt, εt+1)

with x0 a given. In this formulation, xt is an n× 1 vector of state variables, known by the

agent at time t; ut is an m× 1 vector of the agent’s decision variables. The d× 1 vector Dt

is a vector of variables referred to as economy-wide variables. These are variables that the

agent assumes are unaffected by his decisions and which lack fixed transition equations.

They will be determined by a set of equilibrium conditions. Finally, εt+1 is an e× 1 vector

of random shocks.

State variables can be further sub-divided into two groups. One group consists of vari-

ables that are purely exogenous to the agent. Their transitions will depend only on factors

outside of the agent’s control, namely themselves and economy-wide variables. These vari-

ables represent things like the technology level and the stance of monetary policy. State

variables that are under the control of the agent do not have transitions dependent on their
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current values. For such a variable, xit, controlled by the agent, xit+1 depends only on ut,

Dt, and possibly εt+1. These variables are things specific to the agent such as his savings

and money holdings. Our assumption as to transitions for these variables are not really

restrictive in that we have yet to come across a dynamic general equilibrium model that

cannot be put in a form that satisfies this assumption. The primary reason for this restric-

tion is to enable us to write the agent’s first order conditions as described below without

having to deal with a value function as well.

In what follows, we denote differentiation with respect to a decision variable with a

Greek subscript, ψ. Differentiation with respect to a state variable is denoted with a

Roman subscript. The first-order conditions of the agent’s optimization problem then are:

rψ(xt, ut, Dt) + βEt

[∑
i∈C

ri(xt+1, ut+1, Dt+1)giψ(xt, ut, Dt, εt+1) |xt
]

= 0

for ψ = 1, . . . ,m. The sum of products of derivatives of the return function and the

transitions functions is taken over those variables that are under the agent’s direct control,

hence the shorthand notation, i ∈ C. The equilibrium can be characterized as a set of

functions, ut ≡ u(xt) and Dt ≡ D(xt), that determine the agent’s decisions and the values of

the economy-wide variables as functions of today’s states. The agent’s first-order conditions

are m functional equations in these unknown functions. To complete the determination of

these unknown functions, we need d more functional equations. These will be equilibrium

conditions for the economy and can take a wide range of forms. The usual case is for them

to take a simple form such as e(xt, u(xt), D(xt)) ≡ 0.
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In the concrete case we discuss above, we can express the vectors above as follows:

xt = (zt, bp,t, bz,t, ln(Rt), ln(Pt−1), µt−1, δt, kt)

where µt is the money growth rate, defined as Mt/Mt−1. Note that agent takes the level

of technology, beliefs about the current state of the Markov switching parameters, prices,

nominal interest rate, and money growth rate as given. The decision vector is:

ut = (kt+1,mt+1, lt)

where mt+1 represents per capita money balances. Finally, the only other variable needed

to determine the agent’s decisions at time t is the money growth rate needed for the central

bank to hit its interest rate target; thus Dt is simply µt and r(xt, ut, Dt) is the agent’s

utility U(ct, lt). The three decision variables imply theree first-order conditions. Since per-

capita money balances mt+1 must equal 1 in equilibrium, these three functional equations

implicitly determine kt+1, lt, and µt.

Since it is impossible to derive an analytic expression for these unknown functions, they

are approximated with polynomials of the following form:

u(xt) ≈
∑

d1+d2+···+dn≤D
c(d1,d2,...,dn)ϕ(d1,d2,...,dn)(xt)

where D is the upper bound on the degree of the polynomial. The ϕ functions are polyno-

mials that take the form:
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ϕ(d1,d2,...,dn)(xt) = T d1(x1
t )T

d2(x2
t ) · · ·T dn(xnt )

where T di(x) is a polynomial in x with degree di. T
di(x) could, technically, be simply xdi ,

but these polynomials are notorious for their extremely poor approximation properties.

Consequently, we use suitably scaled and translated Tchebychev polynomials for the T di(x)

functions. These not only have excellent approximation properties, but are also easy to

evaluate with the intrinsic functions that come with most standard software packages.

Usually defined on the interval [−1, 1] as T n(x) = cos(n arccos(x)), they can be easily

evaluated by any package that has an intrinsic cosine and arccosine function.

In general, m+ d functional equations implicitly determine both u(xt) and D(xt). Let

us denote them as

Rψ(xt, u(xt), D(xt)) = 0

for ψ = 1, . . . , (m + d). We need to find coefficients for the polynomial approximations so

that the approximations “nearly” solve the set of functional equations above. There are

numerous ways to do this, as described in detail in Judd(1998). The most natural choice

is a set of coefficients that sets

∫
Rα(x, u(x), D(x))ϕ(d1,...,dn)(x)dx = 0

where these integrals are taken over some pre-determined region of space thought to capture

most of the dynamic behavior of the economy and the ϕ(x) functions have been translated
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to center on this region. This approach is appealing since it transparently gives one equa-

tion for each unknown coefficient in each functional approximation. It is also eminently

reasonable in that, if for some reason, the equations Rα(x, u(x), D(x)) = 0 were satisfied

exactly by polynomials u and D, these conditions would determine their coefficients ex-

actly. The reader can refer to Judd (1998) for a more detailed discussion of the selection

of this particular set of equations and why he calls it a projection method. Furthermore,

in practice there is no need to try to evaluate these integrals to a great degree of accuracy.

As long as the Rα functions are zero in some average sense over a region, we should have

reasonable approximations to the agent’s decision rules over this region. Consequently

rather that try to evaluate these integrals to a high degree of precision, we simply use a

pseudo-random Monte Carlo method to calculate them. Thus, derivation of the coefficients

in our polynomial approximations has been reduced to the solution of a set of nonlinear

equations in these coefficients. While evaluation of the equations themselves can be slow,

Broyden’s method for solving nonlinear equations works well.

5. Empirical Results

An important property of nonlinear decision rules is that higher moments matter. To

illustrate this feature of the nonlinear decision rules, we investigate the effect of a mean-

preserving spread of the depreciation rate. For this illustration, the low and high quarterly

depreciation rates were set to 0.018 and 0.022. In the first case, the transition probabilities,

p and q, were both set to 0.9. A mean-preserving spread sets the two transition probabilities
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to 0.5. The variance of the depreciation rate is 2.78 times higher for the case of the

mean-preserving spread. Since higher moments matter in the nonlinear decision rules,

it is interesting to note what effect risk terms related to depreciation switching have on

the level of the output growth path. We simulate the model 400 times with and without

the mean-preserving spread and find that the level effect on output lowers output by 0.2

percent (or about 20 billion dollars in the U.S. economy in 2002). Given that the model has

time-separable log utility, this level effect is perhaps surprisingly large. One could make it

larger through habit persistence if that were a modeling objective. Our main purpose for

working with nonlinear decision rules in this article, however, is to investigate the effect of

Markov switching depreciation, which implies a nonlinear decision rule, on the comovement

of hours and productivity.

We present results on the comovement of hours and productivity in the form of sensi-

tivity analysis and impulse responses. The sensitivity analysis highlights several findings

surrounding the influence of depreciation on the hours-productivity correlation. In partic-

ular, we emphasize that it is the time-varying nature of depreciation, not its level, that is

important for generating the hours-productivity correlation. Impulse responses illustrate

why the model attains a low correlation between hours and productivity.

Sensitivity Analysis

We begin our analysis by reviewing the main properties from the case where depreciation

is held constant. Figure 1 plots the hours-productivity correlation for constant (quarterly)

depreciation rates, δ, between 0.01 and 0.04. The correlation is 0.86 for δ ranging between
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0.01 and 0.027. Extreme values of 0.037 or greater are able to generate negative correlations.

A depreciation rate of 0.035 is in line with the empirical correlation; such a rate seems

unrealistically high, however.

The low hours-productivity correlation arising from high depreciation rates is explained

by two features. The first is the increasing use of labor over capital. The second, in terms

of economic fluctuations, the variance of hours falls considerably faster than that of output.

In other words, the variance of capital increases as depreciation increases. This implies that

the fluctuations in productivity must increase, which leads to a lower hours-productivity

correlation.

Next, we consider the influence of switching between states with a low and a high

depreciation rate. The correlation results are given in Figure 2 for three different processes

defined by δ + / − µ, where δ = (0.017, 0.02, and 0.022) and µ = (0, 0.0005, ..., 0.005).

The transition matrix for the two state process is set to p = 0.9 and q = 0.85. The

results find that relatively small deviations from the conditional mean between +/− 0.003

and +/ − 0.0035 generate correlations that are consistent with the empirical data. It is

important to note that this result stems from the switching and not from high depreciation

rates.

As an alternative to the Hodrick-Prescott filter that is applied here and elsewhere in

the literature prior to calculating correlations, Cogley (1997) uses a consumption-based

measure of the business cycle from Cochrane (1994). With this measure of the cyclical

components, Cogley (1997) finds that hours and productivity are negatively correlated.
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Figure 2 shows that negative correlations easily attained from our model with depreciation

switching, with switching, for example, between δ = 0.017 + /− .005.

We also consider the influence of persistence in the states for δ on the hours-productivity

correlation. Three cases are considered: high-high, low-low and high-low persistence. High-

high persistence is defined as p = 0.9 and q = 0.85 in the transition matrix. High-low

persistence takes on the values p = 0.9 and q = 0.75 and low-low persistence is defined as

p = 0.75 and q = 0.75.

The results, summarized in Figure 3 for δ = 0.02, find that if the degree of persistence

is high in both states, then the depreciation rates do not need to deviate much from each

other in order to match the empirical correlations. The opposite result is true when the

transition matrix reflects low-low persistence. In this case, considerable switching between

the high and low states occurs, but the distance between the mean depreciation rates in

the low and high states have to lie further apart in order to obtain the desired hours-

productivity correlation. The more realistic case of a highly persistent (low mean) state

together with a less persistent (high mean) state lies in between the other two cases.

Table 2 presents correlations and standard deviations of our model based data with

actual data for the period 1958:1 to 1999:4. The first column gives information of the model

with only the technology shock. This model has difficulty matching the investment ratio

and the hours-productivity correlation. The introduction of switching in the depreciation

rate is unable to resolve the problem with the investment ratio, but offers a substantial

improvement for the hours-productivity correlation. It falls from 0.86 to 0.22.
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Impulse Responses

The precise meaning of impulse responses to a switch in a Markov process requires

explanation. In particular, we have to define the ‘shock’ behind an impulse response. We

run parallel simulations of the DSGE model for the ‘switch’ and ‘no switch’ scenarios. Both

simulations share the same technology shocks and a depreciation rate that randomly follows

the Markov switching process until 25 periods before the end of the sample of length T .

At that point, the first simulated series puts depreciation into the low state for the next

six periods; the second series puts depreciation into the low state for the next period, the

high state for the next four periods, and then the low state again in the sixth period.

A switch in the depreciation rate becomes known in the same period and the endogenous

variables reflect this new information, such that the variables should respond in the impulse

before the capital stock is affected. After the specified return to the low state in the sixth

period, the two series again share a common set of realizations of the Markov switching

process for depreciation. The four period duration of the high-depreciation state roughly

reflects the half life of a spell in that state according to its transition probability, q = 0.85

(0.854 = 0.51). The difference between the paths of variables with and without the four

period sojourn to the high-depreciation state serves as a measure of the impulse response

to a switch to the high-depreciation state. The reported impulse response is the average

response from 400 simulations of the model.

Figure 4 plots the impulse responses of output, capital, hours and productivity to a

switch to the high-depreciation state that lasts four periods. In the low state the deprecia-
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tion rate δ is set to 0.018 with transition probability 0.9, whereas in the high state δ = 0.022

with transition probability 0.85.

The shock to capital generates the typical non-humped shaped dynamics common

among RBC models (see Gilchrist and Williams, 2000). More important for us is the

observation that depreciation switching tends to push the hours-productivity correlation

downward or even make it negative, depending on the degree of switching. With enough

variation in the depreciation rate, the negative effect on the hours-productivity correlation

can overcome the tendency of technology shocks to induce a positive correlation.

The depreciation shock causes a negative level shift in output. Hours fall initially

because the capital stock is relatively high at first in relation to the lower level of output.

As the capital stock falls, however, labor hours must be substituted for capital to maintain

steady output. When the depreciation rate switches back to the low state, output returns

immediately to its initial level. To achieve this level of output, hours must jump above

their initial level because the capital-output ratio is lower than it was initially. Gradually

hours decline as the rebuilding of the capital stock allows for substitution of capital for

labor. Throughout this process, the capital-output ratio moves in the opposite direction

from hours. Thus, labor productivity moves in the opposite direction from hours. If

depreciation switching is of sufficient magnitude and frequency, the negative correlation it

imparts between hours and productivity can overcome the positive correlation implied by

technology shocks, as shown in Figure 2.
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6. Summary and Conclusions

In a dynamic stochastic general equilibrium (DSGE) model, we investigate whether a

stochastic depreciation rate for capital can account for a low correlation between hours

worked and labor productivity when depreciation is only allowed to fluctuate within a nar-

row range. In the somewhat uninteresting case, as we illustrate, an exceptionally high level

of the depreciation rate, rather than its fluctuations, can reduce the hours-productivity

correlation. Of greater interest is to is limit the range of fluctuations around an acceptable

rate of depreciation. To do is, we use a two-state Markov process. Such stochastic depre-

ciation switching can capture sudden shifts that occur, for example, when energy-intensive

forms of capital are rendered obsolete from an energy shock.

Markov switching in capital depreciation makes the decision rules nonlinear. Our con-

tribution to DSGE solution methodologies is to apply Judd’s (1998) projection method to

nonlinear decision rules. This approach allows for nonlinear decision rules in a richer set of

models with many more state variables than can be solved with grid-based approximations.

Our calibration strategy for the time-varying depreciation rates relies on the empirical

work of Abadir and Talmain (2001). They find that depreciation rates for the United States

are highly persistent and fluctuate within a narrow band. These properties can be easily

incorporated in a Markov-switching process.

With this setup, several results emerge from a simple RBC model augmented with

Markov-switching depreciation. The level of depreciation is relatively unimportant for the
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hours-productivity correlations when depreciation is subject to Markov switching. With

relatively small fluctuations in depreciation and switches to the high depreciation state

that have a half-life of one year, the model replicates the low 0.24 hours-productivity

correlation found in the data, whereas the model without depreciation switching delivers

the standard result that the hours-productivity correlation exceeds 0.85. As the impulse

response function shows, a depreciation shock induces a correlation between hours and

labor productivity that is about minus one. An appropriate mix of stochastic shocks

between technology and depreciation can result in the small positive correlation observed

in the data. Such dramatic results suggest that Markov switching is a powerful extension

to DSGE models, and the methods we introduce can allow for several Markov switching

parameters simultaneously.
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Table 1: Calibration of Markov Switching Economy

Rate of time preference β 0.9917

Production function coefficient α 0.33

Leisure coefficient θ 2.9474

Labor productivity growth λ 1.00373

Indivisible labor L̂ 0.25

Shopping time tech. ν 0.75

Shopping time tech. ζ 0.04875

Depreciation rates δ 0.015, 0.025

Depreciation transition probability pδ, qδ 0.90 0.85

AR technology ρ 0.95

std. deviation of technology error σρ 0.0045
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Table 2: Business Cycle Statistics for the Switching Model

Tech. shock only with Time-Varying Dep. Actual Data

σy 1.07 1.08 1.24

σc/σy 0.36 0.45 0.52

σi/σy 3.10 3.37 2.50

σn/σy 0.69 0.79 0.77

σy/n/σy 0.35 0.46 0.46

σn/σy/n 2.00 1.72 1.64

corr(c,y) 0.94 0.68 0.84

corr(i,y) 0.94 0.95 0.92

corr(n,y) 0.99 0.89 0.88

corr(y/n,y) 0.94 0.63 0.66

corr(y/n,n) 0.86 0.22 0.25

31


