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Abstract

In general equilibrium models, optimal cyclical monetary policy is usually
derived around an optimal steady-state inflation level, which in most cases is
zero or equal to the negative of the real interest rate. This paper examines
whether and how different steady-state inflation levels and other steady-state
distortions affect the optimal monetary policy response to shocks. This issue is
first discussed in general terms. Then, a simple example is presented, where op-
timal policy can be procyclical or countercyclical depending on the steady-state
inflation level. This paper suggests that both issues of the choice of inflation tar-
get and optimal cyclical monetary policy should be addressed simultaneously,
as steady-state distortions influence the optimal reaction of monetary policy to
shocks. More generally, the paper shows that assumptions about steady-state
distortions affect the derived optimal cyclical policy.
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1. Introduction

In general equilibrium models, optimal cyclical monetary policy is usually derived

after log-linearizing structural equations around a first-best steady-state inflation

level, which in most cases is zero1 or equal to the negative of the real interest rate2

(Friedman rule). However, those inflation levels do not correspond to what we observe

empirically. This paper examines whether and how deviating from those first-best

steady-state inflation levels affects the optimal monetary policy response to shocks,

or in other words, how different inflation targets affect the optimal cyclical monetary

policy.

The choice of a higher inflation target can be motivated by different reasons. First,

inflation is potentially able to offset or dampen some distortions, like e.g. imperfect

competition or downward wage rigidities. Then, it is sometimes argued that low

steady-state interest rates provide central bank with less flexibility to react to strong

negative shocks and increase deflation risks. I will argue that the choice of steady-

state inflation level affects the optimal monetary policy response to shocks, whether

the inflation target has been chosen optimally to ease distortions or is sub-optimally

high.

Some studies3 have examined the merit of different monetary policy rules in en-

vironments that are not Pareto optimal, and analyzed second-best policies where

1See e.g. Gali (2001), King and Wolman (1999), and Woodford (1999). Often, in models featuring
sticky prices, distortions arising from imperfect competition or from the opportunity cost of holding
money are assumed away, and monetary authorities choose to stabilize the price level in order to
avoid different relative prices induced by the lack of synchronization in price adjustments. Another
approach was adopted by King and Wolman, who consider a dynamic optimization problem that
also leads to a zero inflation optimum.

2See e.g. Carlstrom and Fuerst (1998), Fuerst (1994), and Ireland (1996).
3See e.g. Aiyagari and Braun (1998), Carlstrom and Fuerst (1995, 1996), and Fuerst (1994, 1998).

2



nominal interest rates were strictly positive in order to avoid indeterminacy issues.

In this paper I examine the mechanisms at work that affect optimal cyclical policy

when monetary policy deviates from the standard first-best inflation levels of zero

or the negative of the real interest rate, whether it does so sub-optimally or to ease

other steady-state distortions, and the consequences of varying steady-state inflation

levels for optimal cyclical monetary policy.

The main idea is that in a distorted economy with a striclty positive steady-state

inflation, the choice faced by the monetary authority is whether and how to let the

distortion fluctuate when the economy is subject to shocks. In the example studied

below, a varying distortion on one hand lowers average consumption as it does not

allow firms to let labor covary optimally with productivity, but on the other hand

a distortion relatively high in booms and low in downturns implies a relatively high

distortion when the marginal utility of consumption is low and thus the utility cost

of the distortion is relatively low. Different steady-state distortion levels affect those

margins and lead to different optimal cyclical monetary policy prescriptions. In other

terms, with different levels of steady-state distortion, fluctuations affect households

more or less strongly as the curvature of the utility function differs. The optimal

monetary policy fluctuations smoothing should thus also vary.

In section 2, a general discussion is provided on the mechanisms that affect cyclical

policy when the degree of distortion changes. Then, in section 3, a simple example

is presented, based on a setup proposed by Carlstrom and Fuerst (1996), in order

to illustrate the effect of different steady-state inflation levels and of the role of risk

aversion on optimal cyclical monetary policy. Section 4 concludes.
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2. A Discussion of the Mechanisms at Work

This section presents some intuition on the way steady-state inflation can affect

the optimal monetary policy response to shocks.

In general equilibrium models, optimal monetary policy is derived by maximizing

the expected utility of a representative household. Let us write its utility as

U [Y (θ,R) , L (θ,R)] . (1)

The representative household consumes what its produces, thus consumption equals

production Y , and it supplies labor L to the firm. Y (θ,R) represents the equilibrium

behavior of output, where the factors of production are already expressed in terms

of the monetary policy instrument R and the underlying shocks θ. R is the gross

nominal interest rate, but it could also represent money growth. L (θ,R) represents

the equilibrium behavior of labor.

There is no consensus on the way to model monetary non-neutrality, but the func-

tion Y (θ,R) can be interpreted in the lights of the different theories. First, monetary

policy affects the real economy through steady-state inflation. Steady-state inflation,

which determines the steady-state nominal interest rate R, can affect real output

through shoe-leather costs, through a tax on labor (Carlstrom and Fuerst, 1996), or

through relative price distortion (Galí, 2001), for example, depending on the model.

Then, monetary policy can have short-run effects through imperfect information or

nominal rigidities, like e.g. limited participation constraints or stickiness in prices

or wages. In those cases, deviations from steady-state policy, R − R, can generate

short-term non-neutrality.
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The question of interest for this paper is then how would optimal cyclical monetary

policy, represented by R − R, be affected by the steady-state inflation level, which

determines R. There are several potential reasons that could justify deviating from a

first-best zero inflation level or from the Friedman rule. Distortions, like e.g. imperfect

competition or downward wage rigidities, could potentially be offset or dampened by

a strictly positive inflation level. In this paper however, I do not model such kinds

of distortions. A positive inflation level should thus be seen here as sub-optimal

and exogenously imposed. Optimal monetary policy becomes thus the solution of

a second-best problem, which is to maximize expected utility given a sub-optimal

steady-state inflation level.

One way to motivate this approach would be to think of a government imposing

an inflation target to an independent central bank, which would then be responsible

for the conduct of an optimal cyclical monetary policy. An inflation target that is

too high can be thought of as a consequence of misjudgment on the optimal inflation

target level, or arising from the fear that low interest rate levels could prevent a

central bank of reacting to strong negative shocks and increase deflation risks.

However, the arguments developed in this paper also apply to models where distor-

tions justifying a strictly positive inflation level are explicitly modeled and where a

strictly positive steady-state inflation level is optimal, as long as the steady-state in-

flation level differs from the first-best case that would be characterized in the absence

of those distortions. As soon as distortions are present, whether they are generated by

a strictly positive inflation level or by other factors, the resulting allocations should

induce a different cyclical monetary policy. In other words, this paper tries to char-

acterize the consequences of assuming away distortions that justify a strictly positive

5



inflation rate in models that examine optimal monetary policy, or the consequences

of choosing a sub-optimal inflation target.

2.1. Optimal Cyclical Monetary Policy

We can represent the monetary policy reaction function as

R = R+ δ (θ − 1) , (2)

where δ is the coefficient of reaction, and θ is an i.i.d. shock with mean 1 and variance

σ2θ.

Monetary authorities are maximizing the representative agent’s expected utility.

Taking the expectation of the second-order Taylor approximation of equation (1)

around the steady-state values R = R and θ = 1, we obtain

E (U) = U + UθRσθR +
1

2
URRσ

2
R +

1

2
Uθθσ

2
θ, (3)

where the upper-bar means that these derivatives are evaluated at their steady-state

values. Under certain conditions, URR and Uθθ are negative4. The central bank cannot

influence σ2θ, thus the last term does not affect the second-best maximization problem.

Monetary authorities face a trade-off. First, depending on the sign and amplitude

of UθR, it will be optimal to let the nominal interest rate covary more or less positively

or negatively with the shock. In other words, the optimal monetary policy reaction

depends on how monetary actions affect the marginal influence of shocks on utility

4URR needs to be negative for the problem to be well defined. In this setup, a positive value
for that variable could potentially happen if monetary policy can increase average production by
increasing the variance of the interest rate per se, being more (less) effective at low (high) interest
rates, which does not seem plausible.
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in equilibrium. On the other hand, interest rate fluctuations per se lower welfare,

i.e. URR < 0. The structure of the model will thus determine the optimal degree of

monetary policy reaction to shocks. The influence of different steady-state inflation

levels can then be studied through the effect of varying R on the derivatives UθR and

URR.

The optimal monetary policy reaction coefficient δ∗ can be determined as follows.

From the policy function (2), we can obtain

σ2R = δ2σ2θ, (4)

and

σθR = δσ2θ, (5)

thus the maximization problem can be written as

max
δ

µ
UθRδ +

1

2
URRδ

2

¶
, (6)

which leads to the optimal reaction coefficient

δ∗ =
UθR

−URR

. (7)

In order to gain intuition on the optimal covariance between the monetary policy

instrument and the productivity shock, as well as on the effect of a change in steady-

state inflation on that covariance, it is useful to examine the numerator of (7). From
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equation (1), we can write

UθR = UY Y YθYR + UY YθR + UY LYθLR + UY LYRLθ + ULLLθLR + ULLθR. (8)

We can see that the sign and amplitude of the optimal monetary policy response to

shocks depend on the curvature of the utility function as well as on the equilibrium

effects of shocks and monetary policy actions on labor and output. To find out the

determinants of optimal cyclical policy and the influence of different steady-state

inflation on those determinants, we need to be able to interpret the sign, amplitude

and sensitivity with respect to changes in R of each term, including those in the

denominator, in light of economic theory or empirical evidence. I will focus here on

only a few terms, in order to gain some intuition.

If θ represents a productivity shock, the first term at the right-hand side of (8),

UY Y YθYR, should be positive, implying a positive covariance between the nominal

interest rate and productivity shocks. This first term captures the fact that a positive

covariance between the policy instrument and productivity shocks increases welfare

as it dampens the negative effect of consumption fluctuations.

The second term of equation (8), UY YθR, should be negative and thus push the

covariance between interest rates and productivity shocks in the other direction than

the determinants discussed in the previous paragraph. The main idea behind this

result, which again depends of the specific model used, is that the marginal produc-

tivity of labor increases with a positive productivity shock, and a decrease in interest

rate increases labor. Thus a positive covariance between interest rates and produc-

tivity shock will increase average output and thus welfare, as the marginal utility of

consumption UY is positive.
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The two first terms of equation (8) already show us two forces that pull the optimal

covariance between the policy instrument and productivity shocks in opposite direc-

tions. Consumption smoothing concerns would call for a positive covariance, while

a negative covariance would increase average consumption. The sign of the optimal

covariance will also be influenced by other model specifications, like e.g. the way the

disutility of labor is modeled, and the amplitude of that covariance will depend on

the denominator of equation (7) as well, which accounts for the effect of interest rate

variations on utility.

2.2. Effects of Varying Steady-State Inflation/Distortions

Concerning the main question addressed in this paper, we see that different steady-

state inflation levels or other distortions will affect the optimal cyclical policy by influ-

encing the sign and amplitude of the different determinants of the optimal covariance

between the policy instrument and the shocks. A higher steady-state inflation will

cause the output level to decrease, due either to additional resources spent carrying

out transactions (shoe-leather costs), to a higher tax on labor (Carlstrom and Fuerst,

1996), or to a higher relative price distortion (Galí, 2001), depending of the model.

Lower equilibrium output and labor levels will influence the different derivatives.

For example, households will find themselves on a point on the utility curve with

more curvature, i.e. where the absolute value of UY Y is larger, and will thus suffer

more from output fluctuations. From the first term of equation (8), this will push

towards a more positive covariance between the interest rate and shocks. On the

other hand, UY will be larger, thus households will appreciate more the higher average

output generated by a negative covariance between the interest rate and shocks. It
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could also be that at new allocations, the effect of shocks or interest rate changes on

output, Yθ and YR, are different, calling for a different monetary policy reaction to

shocks. The net effect will also depend of the other terms of the numerator, and the

amplitude of the change will be determined by the denominator as well.

We can already see that certain model parameters, like e.g. the coefficient of risk

aversion, may play a crucial role. Higher degrees of risk aversion will make house-

holds more averse to fluctuations and thus induce a more positive optimal covariance

between the interest rate and productivity shocks. This fact will be illustrated in

section 3, with the specific model considered.

We can also see that what applies to a higher distortion generated by a higher in-

flation target also applies to any other distortion. We can use the analysis presented

above to assess how results derived when distortions are assumed away would be af-

fected if those distortions were taken into account. For example, if a distortion like

imperfect competition justifies a higher inflation target, the distortion generated by

that higher inflation and the remaining imperfect competition distortion that mone-

tary policy could not have offset will affect the steady-state levels of the derivatives

discussed above, and thus the optimal cyclical policy will be affected. In that sense,

log-linearizing structural equations around their first-best non-distorted solutions may

lead to different prescriptions for the optimal cyclical policy.

The following section illustrates this discussion with a simple example.
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3. A Model with Limited Participation Constraint

3.1. Model Description

The purpose of this section is to illustrate with a simple model the influence of dif-

ferent steady-state inflation levels on the optimal monetary policy reaction to shocks.

As Cooley and Quadrini (1999) documented, the Federal Open Market Committee

seems to monitor and react to changes in commercial borrowers’ credit financing

conditions. With that reading of the events, when, following a positive productivity

shock, firms want to expand and the loan market gets tight, the Federal Reserve

would inject liquidity in the system. As Cooley and Quadrini pointed out, the positive

correlation between monetary aggregates and employment may be a consequence of

a policy, which after a positive productivity shock, when output is below its potential

level due to a tighter loan market, would call for a liquidity injection to allow firms

to take fully advantage of the shock.

The economy considered here is subject to productivity shocks that affect the nom-

inal interest rate at which commercial firms borrow from households through finan-

cial intermediaries. Given households’ limited participation constraint in the financial

market, loan market conditions are influenced by productivity shocks, and this affects

labor demand decisions. The central bank has to decide whether to accommodate

these shocks, through a liquidity effect.

The general setup, where open-market operations can generate liquidity effects on

nominal interest rates, is provided by Lucas (1990). Fuerst (1992) incorporates the

production side and interprets the nominal interest rate as the one firms face when

paying their workers in advance. Christiano, Eichenbaum and Evans (1997b) provide
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empirical estimates of the liquidity effect on nominal interest rates and production

following a shock to the money supply, and calibrate a limited participation constraint

model with adjustment costs that could replicate their empirical results.

The underlying model mechanism is as follows. Firms have to use savings from

households to pay their inputs in advance of production, thus factors demand and

output will depend on the nominal interest rate in the loan market. Households

are subject to a limited participation constraint or adjustment costs that introduce

some sluggishness to their savings decision. As a result, the monetary authority

can influence the nominal interest rate, and thus production, by injecting money

directly to the loan market through the financial intermediaries. In other terms,

the central bank can directly affect the relative holding of cash between the different

sectors of the economy. After a positive productivity shock, firms will want to expand

their activity. However, as the supply of loans will not change, due to the limited

participation constraint, there will be upward pressure on the nominal interest rate.

A procyclical monetary policy, which in that case increases the money supply, would

dampen the upward pressures on the nominal interest rate and thus allow firms to

optimally expand their activity.

A strictly positive nominal interest rate acts like a tax by scaling down employment

and production. The first-best outcome is thus obtained by keeping the nominal

interest rate at zero, increasing the money supply when the economy is hit by a

positive productivity shock. In case of a negative shock, the optimal monetary policy

would be indeterminate, because of the non-negativity constraint on the nominal

interest rate. The way previous studies5 have dealt with this issue is to consider only

policies where cash-in-advance constraints for both households and firms are binding,

5See e.g. Fuerst (1994).
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which imply a procyclical policy even in the event of a negative productivity shock.

When we depart from the first-best outcome, and allow for a positive average inflation

rate, the indeterminacy disappears but we are left with second-best policies. Previous

studies have compared different second-best policies for a given distortion. Carlstrom

and Fuerst (1996) show that a nominal interest rate peg is superior, in terms of

welfare, to a money growth peg with the same average distortion level. They relate

that finding to the result that a constant tax is preferred to a variable one, as a strictly

positive nominal interest rate acts as a tax on labor demand in this model. Moreover,

Carlstrom and Fuerst (1995) provide numerical results in favor of a nominal interest

rate peg over a constant money supply growth rate rule by comparing two economies

with the same non-stochastic steady-state level of capital and nominal interest rate.

Here I use the setup proposed by Carlstrom and Fuerst, and examine the con-

sequences of varying steady-state inflation levels for the optimal cyclical monetary

policy. Instead of ranking the two pegs, i.e., money growth and interest rate pegs,

I derive the optimal policy, which can be somewhere in between the two pegs, and

examine how different steady-state distortions affect the optimal policy. If for low

steady-state inflation levels it is optimal to allow firms to adjust their labor demand

to productivity shocks, for higher inflation levels and thus larger distortions, con-

sumption smoothing concerns become more important, and monetary policy will not

necessarily dampen the offsetting effect of interest rate movements on output.

The section is organized as follows. In section 3.2, the model and its equilibrium

are presented. Section 3.3 compares the first-best with equilibrium outcomes. In

section 3.4, the second-best policy for a given average nominal interest rate is derived.

Calibration is presented in section 3.5, and results from the calibrated model are
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displayed in section 3.6.

3.2. The Model

3.2.1. Household

An infinitely lived representative household maximizes its utility

E−1
∞X
t=0

βtU (Ct, Lt) , (9)

where C and L are consumption and labor, respectively, and β is the discount factor.

The household is subject to a cash-in-advance constraint; it keeps the amount of

cash (Mt −Nt) to purchase goods at period t, and sends Nt to the financial interme-

diary, at the beginning of the period, where Mt is the money balances carried over

from t − 1. At the end of the period, it gets the return RtNt from its deposit (R is

the gross nominal interest rate), and the profits RtXt from the financial intermediary

and Dt from the firm.

The constraints it faces are thus

PtCt ≤Mt −Nt +WtLt, (10)

Mt+1 = Rt (Nt +Xt) +Dt + (Mt −Nt +WtLt − PtCt) , (11)

and

0 ≤ Nt ≤Mt, (12)

where Pt,Wt andXt are the price, wage, and monetary injection from the central bank
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to the financial market, respectively. The problem of the household is thus to choose

the sequence {Ct, Lt, Nt,Mt+1}∞t=0 to maximize its utility subject to the constraints
above.

The household is subject to a limited participation constraint, i.e. Nt has to be

function only of Mt and variables dated t− 1 and earlier. Thus the household has to
choose the amount it sends to the intermediary without knowing the realization of

the current shock on production; neither does it know the size of the money injection,

Xt =MS
t+1 −MS

t , if the latter is a function of the shock of the current period.

The information sets are represented as follow:

Ωt includes all the variables dated t and earlier;

ΩN
t includes the variables known to the household when the latter chooses Nt, i.e.

Ωt−1 and Mt.

To express the household’s problem in a recursive form, we normalize the nominal

variables by the beginning of period money supply MS. Let us define

p =
P

MS
, w =

W

MS
, n =

N

MS
, m =

M

MS
, x =

X

MS
, 1 + x =

MS´

MS
, d =

D

MS
.

where a prime denotes next period variable.

The Bellman equation is then

V (m) = max
n∈[0,m]

EΩN

½
max
C,L,ḿ

[U (C,L) + βV (ḿ)]

¾
(13)

such that

pC ≤ m− n+ wL (14)
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and

(1 + x) ḿ = R (n+ x) + d+ (m− n+ wL− pC) . (15)

We assume that productivity shocks are i.i.d. First order conditions are presented in

appendix 1.

The utility function is given by

³
C − ψ0

L1+ψ

1+ψ

´1−σ
1− σ

, for 0 < σ, σ 6= 1, (16)

ln

µ
C − ψ0

L1+ψ

1 + ψ

¶
, for σ = 1. (17)

The labor supply elasticity is 1
ψ
. Christiano, Eichenbaum and Evans (1997a) pro-

pose a way to reconcile this utility function with balanced growth. This form of utility

function, which implies a zero income effect on leisure, is chosen so that first-best and

equilibrium employment are both procyclical in the model, for any coefficient of risk

aversion. This would not be the case with the functional form U = C1−σ−1
1−σ − V (L),

where V 0 ≥ 0 and V 00 ≥ 0, given the chosen form of the production function. With

the latter utility function, equilibrium employment would not respond to produc-

tivity shocks when money growth is constant, and optimal employment would be

countercyclical for σ > 1.

3.2.2. Firm

The production function has the form

y = K + θLα. (18)
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The productivity shock θ has a mean of unity and variance σ2θ. This production

function was suggested by Carlstrom and Fuerst (1996) to capture some stylized

facts with a simple model. Physical capital is assumed constant and enters additively.

With this specification, nominal interest rates move procyclically when money growth

is constant. This would be the case with a Cobb-Douglas production function when

physical capital accumulation is taken into account. WithK = 0, the nominal interest

rate does not react to productivity shocks, and moves only with changes in the money

growth rate, as explained in appendix 2. However, the results of this paper remain

the same whether K = 0 or K 6= 0: the optimal cyclical monetary policy does differ
for different steady-state inflation levels.

We assume that the firm chooses labor demand to maximize the discounted value

of its dividend payments to the household (shareholder), and is subject to a cash-

in-advance constraint: it has to borrow to pay its wage bill at the beginning of the

period. Its problem is thus

max
{Lt}∞t=0

E0

∞X
t=0

µ
βt+1

UC,t+1

Pt+1

¶
Dt, (19)

where

Dt = Pt

¡
K + θtL

α
t

¢−RtWtLt. (20)

As the household is also subject to a cash-in-advance constraint, the firm discounts

the profit at time t with the marginal utility of consumption and price at time t+ 1.

The first order condition is then

αPtθtL
α−1
t = RtWt. (21)
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3.2.3. Financial Intermediary

At the beginning of the period, the representative competitive financial intermedi-

ary collects the money the household sends to it, Nt, and receives a money injection

from the central bank, Xt = MS
t+1 −MS

t . It then lends that entire amount to the

firm, clearing the financial market:

WtLt = Nt +Xt. (22)

At the end of the period, the financial intermediary collects the loan (capital plus

interest) from the firm, Rt (Nt +Xt), and pays back the deposit (capital plus interest)

to the household, RtNt. The profit, RtXt, is then also distributed to the household.

3.2.4. Monetary Policy

The central bank is assumed to be able to react to the contemporaneous produc-

tivity shock. The monetary policy could be modeled either as

x = x+ δx (θ − 1) , (23)

or as

R = R+ δ (θ − 1) . (24)

If the central bank sets the nominal interest rate, the money supply will be deter-

mined endogenously, in the sense that it will have to be adjusted by the central bank

to implement the interest rate rule.
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3.2.5. Equilibrium

An equilibrium consists of allocation functions C (θ) , L (θ) , n, and price functions

R (θ) , p (θ) , w (θ) , such that the household maximizes utility and firms maximize

profits given the price functions, and the goods, loan and money markets clear, for

each realization of the productivity shock, given the monetary policy x (θ). The

allocation and price functions must thus satisfy the Euler equations

ψ0L
ψ =

w

p
, (25)

EΩN

µ
UC

p

¶
= βEΩN

µ
RUĆ

(1 + x) ṕ

¶
, (26)

wR

p
= αθLα−1, (27)

the resource constraint

C = K + θLα, (28)

the loan market clearing

wL = n+ x, (29)

the household cash constraint, which combined with (29) leads to

pC = 1 + x, (30)

given the monetary policy

x = x+ δx (θ − 1) . (31)
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The labor and money market clearing conditions have been imposed. By Walras Law,

the household’s budget constraint is satisfied.

In the analysis below I will characterize the second-best policy in terms of

a nominal interest rate rule of the form R = R + δ (θ − 1). This latter equation
will thus replace equation (31), and money supply will be determined by equilibrium

conditions.

3.3. Solving for First-Best and Equilibrium Employment

Using (25) and (27), we can obtain equilibrium employment

Le =

µ
α

ψ0

θ

R

¶ 1
(1+ψ−α)

, (32)

whereas first-best employment in this model is given by

L∗ =
µ
α

ψ0
θ

¶ 1
(1+ψ−α)

. (33)

Thus, from equation (33), optimal employment is procyclical. Let us set ψ0 = α, so

that optimal employment is unity at steady-state.

The behavior of equilibrium employment over the cycle depends on the covariance

between the nominal interest rate and productivity shocks. The ratio of optimal over

equilibrium employment is given by

L∗

Le
= Rξ, (34)

20



where

ξ =
1

(1 + ψ − α)
.

If monetary policy is non-activist, i.e. with a constant money growth rule, R

will be positively correlated with the productivity shock, as explained in appendix

2, and this ratio will vary over the cycle, increasing in booms, and decreasing in

recessions. Optimality is obtained by keeping R at unity, which implies injecting

money after a positive productivity shock that would otherwise raise the nominal

interest rate. A zero net nominal interest rate would however lead to a non-unique

optimal monetary policy, as nominal interest rates cannot go below zero. For example,

Fuerst (1994) deals with this multiplicity problem by assuming that both cash-in-

advance constraints (household and firm) are always binding, thus monetary policy

is procyclical even after a negative productivity shock.

Targeting a strictly positive inflation level will imply a steady-state gross nominal

interest rate higher than unity. The fundamental issue addressed in this paper is to

figure out what is the second-best ratio (34) as a function of productivity shocks, for a

given sub-optimal steady-state gross interest rate higher than one, and what this does

imply for monetary policy, or equivalently, what is the optimal behavior of the nomi-

nal interest rate when the central bank targets a strictly positive inflation level. The

strictly positive inflation target is exogenously imposed, thus the maximization prob-

lem becomes a second-best problem. The motivations for that exogenously imposed

sub-optimal inflation target were discussed in section 2.

Section 3.4 characterizes the optimal cyclical monetary policy, and section 3.6 pro-

vides numerical results. In appendix 2 an equilibrium analysis of the model is pre-

sented, where the implications of the assumption that K 6= 0 are developed.
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3.4. Solving for the second-best policy

In this section, the optimal cyclical behavior of the nominal interest rate is charac-

terized by deriving an optimal nominal interest rate rule6 for different pre-specified

levels of steady-state nominal interest rate corresponding to different steady-state

inflation levels. We will be looking at a monetary policy rule of the form R =

R+ δ (θ − 1).
Using equation (32) for equilibrium employment and the utility function (16), the

utility of the representative household can be expressed as a function of the nominal

interest rate and the productivity shock:

U =

·
K + θ

¡
θ
R

¢αξ − ψ0
( θR)

ξ(1+ψ)

1+ψ

¸1−σ
1− σ

(35)

As in section 2.1, we can take the expectation of the second-order Taylor approx-

imation of this expression around the steady-state values R = R and θ = 1, and

obtain

E (U) = U + UθRσθR +
1

2
URRσ

2
R +

1

2
Uθθσ

2
θ, (36)

where the upper-bar means that these derivatives are evaluated at their steady-state

values. As explained in section 2, the goal of the policy maker is to maximize¡
UθRσθR + URRσ

2
R

¢
, where URR < 0, for a given steady-state R that has been ex-

ogenously imposed.

If UθR = 0, which would be the case for a utility function of the form U =

ln (C)−L in this simple model, a policy that pegs the nominal interest rate is better

6The optimal behavior of the money supply can be recovered from the equilibrium conditions.
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than any other policy, with same mean R, that causes variations in the nominal inter-

est rate. This is the result obtained by Carlstrom and Fuerst (1996) when seigniorage

is kept constant across the two regimes7. However, as mentioned in section 3.2.1, with

that utility function equilibrium employment does not react to productivity shocks

when money growth is constant, and first-best employment becomes countercyclical

for higher degrees of risk aversion. Adopting the utility function (16) allows us to

get around both these features and will lead to interesting results for second-best

monetary policy. Moreover, with more fully specified models, there is no reason to

expect that UθR = 0.

In case UθR > 0, a monetary policy implying a positive covariance between interest

rates and productivity shocks, like a constant money growth rate for example, could

potentially dominate a nominal interest rate peg. We will see below that this can

be the case. The most important aspect with regard to the issue addressed in this

paper is that UθR varies with different steady-state nominal interest rates and thus

with different inflation targets.

As discussed in section 2.1, the second-best policy is defined as the optimal

reaction of the nominal interest rate to the productivity shock, and takes the form

R = R+ δ∗ (θ − 1) (37)

where δ∗ is chosen so as to maximize expected utility (36), for a pre-specified R.

7Given that UθR = 0 in their model, optimal monetary policy will be determined by the sign of
URR. With their model specifications, fluctuations in interest rate per se increase labor and output,
thus fluctuations in interest rates will increase welfare by raising average output, and decrease welfare
by increasing average labor and by causing fluctuations in consumption. For R > 2, URR becomes
positive in their model, thus the optimal monetary policy then would be to generate an infinite
variance of the interest rate.
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Given this policy function, as seen in section 2.1, we can obtain the optimal reaction

coefficient

δ∗ =
UθR

−URR

. (38)

We will then compare the optimal response of the nominal interest rate to produc-

tivity shocks, i.e. δ∗, to the equilibrium response of the nominal interest rate when

monetary policy is non-activist, i.e. when money supply growth is kept constant.

We approximate the behavior of the nominal interest rate in the non-activist case by

taking the first order Taylor expansion of the right-hand side of equation (49) around

θ = 1, thus getting an expression of the form

R = R+ δe (θ − 1) . (39)

δe will then be compared to δ∗ in (37) for different values of R, in order to see how

much fluctuations in the nominal interest rate are smoothed (or amplified) with the

optimal monetary policy compared to the non-activist policy, for different R.

Here a non-activist policy is understood as a policy that keeps money growth con-

stant. Thus a positive covariance of the nominal interest rate with the productivity

shock does not necessarily mean that the monetary policy is activist, as the lim-

ited participation constraint causes the equilibrium interest rate to increase with a

productivity shock when money growth is kept constant. A pro- (counter-)cyclical

monetary policy will thus dampen (exacerbate) the interest rate response to a produc-

tivity shock, relative to its equilibrium response in the non-activist case, by injecting

(withdrawing) money to (from) the financial sector.
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3.5. Calibration

α is set to 0.7. In order to obtain a steady-state labor share of 0.64, K is set to

0.09375. The period unit is a quarter, thus β is set to 1.03−.25. ψ = 1, implying a

unit labor supply elasticity. Results for different coefficients of risk aversion σ will be

displayed.

3.6. Results

The following results illustrate the potential importance of varying the steady-state

inflation level for the optimal cyclical monetary policy. Results for different average

quarterly gross nominal interest rates, and the corresponding annual inflation rates,

are presented in Table 1. R and δ∗ are from the optimal rule (37).

R Inflation (%) δ∗ when σ = 1 δ∗ when σ = 3 δ∗ when σ = 5
1 -3 0 0 0

1.0075 0 -.003 .04 .08
1.0125 2 -.005 .06 .13
1.02 5 -.008 .10 .22
1.03 10 -.013 .16 .33

Table 1. Optimal Policy, Inflation Target and Risk Aversion

The equilibrium response8 of the nominal interest rate to productivity shocks when

the monetary policy is non-activist, i.e. with a constant money supply growth rule,

δe in equation (39), is 0.28. The first-best monetary policy completely smooths the

nominal interest rates at its zero level, i.e. δ∗ = 0, and allows employment to react

to shocks in an optimal way.

Consider now the last column, i.e. when σ = 5. When the average inflation rate is

8δe varies only very slightly with the different steady-states.
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0 percent, the optimal monetary policy is still procyclical as it dampens fluctuations

in the nominal interest rate, i.e. δ∗ < δe. However, as average inflation increases,

monetary policy becomes less procyclical and allows the nominal interest rate to vary

more. If the central bank chooses the inflation target between 5 and 10 percent for

which δ∗ equals .28, it should adopt a constant growth rate of the money supply,

without reacting to economic disturbances, as in that case δ∗, the optimal reaction

to shocks, is equal to δe, the equilibrium reaction to shocks when monetary policy

is non-activist, i.e. does not react to shocks. For higher inflation rates, the optimal

monetary policy becomes countercyclical, i.e. the central bank withdraws money

when a positive productivity shock occurs, thus exacerbating the rise in interest rate.

Considering the two last columns, i.e. when σ = 3 and σ = 5, we see that the opti-

mal cyclical policy becomes less accommodative when the inflation target increases,

i.e. the optimal covariance between the policy instrument R and productivity shocks

increases with inflation. Optimal cyclical policy switches from procyclical to counter-

cyclical as the inflation target increases, reflecting the fact that in a more distorted

economy, fluctuations in consumption become more painful to households, thus the

central bank will dampen output fluctuations following productivity shocks, as dis-

cussed in section 2.2. Note also that the higher the degree of risk aversion, the more

monetary policy will dampen output fluctuations, as the more these fluctuations are

painful for risk-averse households.

Thus, when the average distortion level is small, it is worth it to smooth nominal

interest rates. This will allow equilibrium employment to react as first-best employ-

ment does and thus achieve a higher average consumption level. However, from a

certain level of risk aversion, as we depart significantly from the first-best outcome it
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becomes less attractive to have employment reacting to shocks and utility smoothing

concerns become more important.

Considering now the case where σ = 1, we see that monetary policy becomes more

procyclical, i.e. goes beyond nominal interest rate smoothing, when the level of dis-

tortion increases. This reflects the fact that for less risk-averse households, the gains

in obtaining a higher output level on average, by letting employment covary positively

with productivity shocks, more than offset the loss of higher output fluctuations, as

they suffer less from them. This comes from the fact that the larger the distortion,

the larger the marginal utility of that extra average consumption will be.

4. Conclusions

The goal of this paper was to try understanding how different steady-state inflation

levels could affect optimal cyclical monetary policy. Alternatively, the paper examines

how accounting for steady-state distortions affect the derivation of optimal cyclical

policy. Due to the presence of short-term rigidities, monetary policy can affect the

equilibrium response of macroeconomic variables to shocks. This paper shows that

the optimal policy response to shocks is dependent of the degree of steady-state

distortion, thus the derived optimal monetary policy rule is dependant of assumptions

about the steady-state inflation level and other steady-state distortions. The main

idea behind this result is that introducing a second distortion can improve welfare,

as by varying the short-term interest rate in response to shocks, the central bank can

allow households to attain the allocation they would have chosen in the absence of

short-term rigidities for a given steady-state distortion.

The implications for monetary policy and for research on monetary policy rules

27



are that, first, the issue of optimal cyclical monetary policy should be addressed

simultaneously with the choice of optimal inflation target. And second, whether or

not we account for various steady-state distortions will affect the results regarding

optimal cyclical monetary policy.

While this paper has examined different mechanisms and provided with a simple

numerical example showing the potential importance of different inflation targets on

optimal cyclical monetary policy, a more fully specified and calibrated model, with

different types of short-term rigidities, shocks, and distortions justifying a higher

inflation target, are needed to obtain quantitative assessment of the importance of

the issue addressed. This is left for future work.
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Appendix 1: First order conditions of the Household’s Problem

Let ν and µ be the multipliers associated with the cash-in-advance constraint and

the law of motion of money demand, respectively. The first order and envelope

conditions are then as follows:

FOC w/r/to C:

UC = (ν + µ) p (40)

FOC w/r/to L:

UL + (ν + µ)w = 0 (41)

FOC w/r/to ḿ:

βVḿ = µ (1 + x) (42)

FOC w/r/to n:

EΩN [ν + µ (1−R)] = 0 (43)

Env. w/r/to m:

Vm = EΩN [ν + µ] (44)

Combining the FOC w/r/to C and L, we get

UL + UC
w

p
= 0. (45)

Combining the FOC and Envelope condition w/r/to ḿ and m, we get

µ =
β

1 + x
EΩN [ν́ + µ́] . (46)
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Appendix 2: Equilibrium Analysis

In this appendix, the special case where α = 1 is examined, which leads to closed

form solutions for employment and the nominal interest rate. Results will be derived

alternatively for K 6= 0 and K = 0.

Combining (29) and (30), we obtain

wL

pC
= s =

n+ x

1 + x
, (47)

where s is defined as the share of the money stock, after the current period injection,

held by intermediaries. As n must be chosen before the productivity shock occurs, s

depends on the shocks only through the response of monetary policy to shocks, i.e.

via x (θ) in (31).

Let ψ = 1. Substituting (25) and (28) in (47), we obtain employment as a function

function of the productivity shock and the money supply (through s)

L =
sθ +

p
s2θ2 + 4sK

2
, (48)

thus

0 <
dL

dθ
≤ s.

When K = 0, we have

L =
θ

R
= sθ,

thus
dL

dθ
= s =

1

R
.
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With K > 0, the increase in the nominal interest rate dampens the equilibrium

response of employment to productivity shocks, whereas, as we will see below, in the

case K = 0 nominal interest rate does not react to shocks when money growth x is

constant.

Equalizing (48) with (32) leads to an expression determining the behavior of the

equilibrium gross nominal interest rate

R =
2θ

sθ +
p
s2θ2 + 4sK

. (49)

Thus the nominal interest rate is procyclical when money growth is constant.

If K = 0, we have

R =
1

s
,

thus R would be independent of the productivity shock when money growth is kept

constant, as s depends on monetary policy only.

The reason why we need a strictly positive K for the nominal interest rate to

react to productivity shocks in this model can be understood as follows. Multiplying

the marginal productivity of labor by equilibrium employment and further by the

price level in (30), we obtain the wage bill, which has to be financed by loans, at the

nominal interest rate R. We thus obtain

(1 + x)
αθLα

K + θLα
= RwL = R (n+ x) .

However, when the monetary policy is non-activist, wL is independent of the pro-

ductivity shock, as it is equal to the loans supply which is determined before the

shock is observed. Thus if K = 0, R would be unresponsive to productivity shocks,
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as movements in the price level would exactly offset changes in productivity.
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