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Puzzling Comovements between

Output and Interest Rates?

Multiple Shocks are the Answer.

Abstract

Stylized facts on output and interest rates in the U.S. have so far proved hard to
match with business cycle models. But these findings do not acknowledge that the
economy might well be driven by different shocks, and by each in different ways. I
estimate covariances of output, nominal and real interest rate conditional on three
types of shocks: Technology, monetary policy and sources of inflation persistence.

Conditional and technology and monetary policy, the results square with standard
models. However these two shocks explain only about 50% of persistent movements
in inflation which are key for understanding the overall comovements. The puzzle
lies in modeling the shocks and transmission channels behind inflation persistence,
not in standard transmission channels for technology and monetary policy errors.

JEL Classification: E32, E43, C32

Keywords: Interest Rates, Business Cycles, Business Cycle Filtering, Technology
Shocks, Monetary Policy Shocks



1 Introduction

The relationship between output and interest rates has long been important to macroe-

conomists and policymakers alike. But basic stylized facts on their comovements in U.S.

data have proved difficult to match within a variety of modern business cycle models. For

instance, King and Watson (1996) study three models: a real business cycle model, a sticky

price model, and a portfolio adjustment cost model. They report that this battery of mod-

ern dynamic models fails to match the business cycle comovements of real and nominal

interest rates with output:

While the models have diverse successes and failures, none can account for the

fact that real and nominal interest rates are “inverted leading indicators” of

real economic activity.1

Calling interest rates inverted leading indicators refers to their negative correlation

with future output. These correlations are typically measured once the series have been

passed through a business cycle filter.2 Amongst the diverse failures mentioned by King

and Watson, RBC models generate mostly a pro-cyclical real rate.

But in the data, the real rate is clearly anti-cyclical, it is negatively correlated with

current output. As mentioned already, it is also a negative leading indicator. This com-

monly found pattern of correlation between bc-filtered output and short-term interest rates

is depicted in Figure 1.3

1King and Watson (1996, p.35). The inverted leading indicator property has been the subject of various
empirical studies, for example Sims (1992) and Bernanke and Blinder (1992). The expression “negative
leading indicator” is synonymous.

2When it can be applied without confusion, I use the phrase “business cycle filter”, or short “bc-filter”,
to describe the bandpass filters developed and applied in Baxter and King (1999) and Stock and Watson
(1999) or the filter of Hodrick and Prescott (1997, “HP”) since each eliminates nonstationary and other
low frequency components from a time series. These filters differ mainly in that the typical bandpass filters
eliminates not only cycles longer than 32 quarters but also those shorter than 6 quarters, while this latter
high-frequency component is retained in the HP filter.

3This evidence is broadly in line with previous studies, see for instance the stylized facts collected by
Stock and Watson (1999, Table 2) for bandpass-filtered U.S. data. The facts are also significant as can be
seen from the confidence intervals plotted in Figure 10 of Appendix A.
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Figure 1: Lead-lag Correlations for Output and Interest Rates
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Note: cor(ỹt, x̃t−k) where ỹt is bandpass-filtered per-capita output and x̃t is bandpass-filtered nominal,
respectively real rate. This ex-ante real rate is constructed from the VAR described in Section 2 as
rt = it − Etπt+1. Monthly lags on the x-axis. U.S. data 1966–1996.

What is the correct conclusion from a mismatch between implications from a dynamic

model and stylized facts? Modern dynamic models always involve a joint specification

of fundamental economic structure and driving processes. Model outcomes, such as the

output-interest rate correlation, involve the compound effect of these two features. Yet,

when “puzzling” findings are taken as evidence against a particular structural feature –

such as sticky prices or portfolio adjustment costs – it is typically not acknowledged that

the economy might alternatively be driven by different types of shocks that yield different

effects within the given structure. Yet, more carefully, it is simply unclear whether dynamic

models fail (or succeed) because of their transmission mechanisms or because of the nature

of their driving forces.
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To shed more light on this important issue, I provide empirical evidence about output-

interest rate comovement conditional on three types of shocks: Technology shocks, mon-

etary shocks and sources of inflation persistence. The first two of these also drive the

models of King and Watson (1996). There are striking results of my decomposition, which

are reported in section 3 using plots analogous to Figure 1:

• After conditioning on technology, the real rate is pro-cyclical and a positive leading

indicator – just the opposite of its unconditional behavior. In response to such

permanent growth shocks, this is a common outcome for variants of the neoclassical

growth model, be they of the RBC or the New Keynesian variety (King and Watson

1996; Gali 2003; Walsh 2003; Woodford 2003).

• Conditional on monetary shocks the real rate is counter-cyclical and a negative lead-

ing indicator, which squares with simple New-Keynesian models, too.4

• Like monetary shocks, but even stronger, persistent shocks to inflation induce anti-

cyclical behavior of the real rate and cause it to be a negative leading indicator. These

shocks also account for the bulk of comovements between output and the nominal

rate.

Thus, the “output-interest rate puzzle” is already defused by conditioning on two widely-

studied shocks: Technology and monetary shocks, which counteract each other. Such

opposing effects of shocks to “supply” and “demand” are a general theme in Keynesian

models (Bénassy 1995). To explain the overall behavior, in particular for nominal move-

ments, it is important to focus attention on sources of inflation persistence.

Rotemberg (1996), Gali (1999) and den Haan (2000) stress the importance of looking

at conditional comovements in the context of the comovement of output with either prices

4Money is neutral in RBC models, so they have not much to say here. Conditional on monetary shocks,
output remains in steady state and correlations are zero.
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or hours. In applying this general idea to output and interest rates, my specific approach

is motivated by the fact that the “puzzle” in this area is typically expressed in terms of

bc-filtered data.

The backbone of my calculations is a VAR for the joint process of (unfiltered) output,

nominal and real interest rate. The VAR serves both as a platform for identifying the

structural shocks and to model the bc-filtered covariances and correlations. The identified

shocks are shocks to the unfiltered data. For instance, the technology shock has a perma-

nent effect on output but it might also have important effects on economic fluctuations.

The point of bc-filtered statistics is to judge models solely on those cyclical properties, not

on their implications for growth (Prescott 1986). In this vein, the VAR is used to trace

out the effects of shocks to the bc-filtered components of output and interest rates. This is

done analytically using a frequency domain representation for the VAR and the bc-filters.

This paper is structured as follows: Section 2 lays out my VAR framework for iden-

tification of the shocks as well as for decomposing the filtered covariances. Results are

presented in Section 3. Related literature is briefly discussed in Section 4. Concluding

comments are given in Section 5.

2 Empirical Methodology

The variables of interest to my study are the logs of per-capita output5, the nominal as

well as the real interest rate:

Yt =




yt

it

rt




(1)

5All quantity variables shall be per-capita without further mention.
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Let us call their bc-filtered component Ỹt. The goal is to model and estimate how structural

shocks induce comovements between the elements of Ỹt.

The backbone of all my calculations is a VAR. Owing to the real interest rate, Yt is

not fully observable. So the VAR is not run directly over Yt but rather over a vector of

observables Xt. As a benchmark, I specify a simple four-variable system using output

growth, inflation, the nominal rate and a monetary policy measure constructed by Romer

and Romer (2004):

Xt =




∆yt

πt

it

mt




(2)

The dynamics of Xt are captured by a p-th order VAR:6

A(L)Xt = et = Q εt (3)

where

A(L) =

p∑

k=0

AkL
k , A0 = I

and Et−1εt = 0 , Et−1εtε
′
t = I

The coefficients Ak and forecast errors et can be estimated using OLS. Identification of

the structural shocks εt will be concerned with pinning down Q. Since fewer shocks are

identified than the VAR has equations, there remains an unidentified component without

6For convenience, I dropped the constants such that Xt is mean zero. This is without loss of generality
since estimating a VAR from demeaned data is equivalent to running a VAR with constants.
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structural interpretation.

The real rate is computed from the Fisher equation rt = ii − Etπt+1 where inflation

expectations are given by the VAR. So Yt can be constructed from Xt by applying a linear

filter:

Yt = H(L)Xt

where

H(L) =




(1− L)−1h∆y

hi

hi − hπ

(∑p
k=1 AkL

k−1
)




and h∆y, hi and hπ are selection vectors such that ∆yt = h∆yXt and so on.

The remainder of this section describes the following: First, how the structural shocks

are identified (Sections 2.1, 2.2 and 2.3). This gives us Q and the conditional dynamics

of the unfiltered variables can be computed from Yt = H(L)A(L)−1Qεt. Second, how to

apply a bc-filter to the structural components of Yt to obtain the decomposition of their

auto-covariances (Section 2.4).

2.1 Technology Shocks

Following Gali (1999), technology shocks are typically identified as the only innovation to

the permanent component of labor-productivity (output per hour).7 While both the mea-

surement of hours and the treatment of their stationarity have been found to be contentious

issues8, hours are of no direct interest to my study.

7However, Fisher (2006) and Greenwood, Hercowitz, and Krusell (1997) employ an alternative definition
of technology as specifically improving investments.

8See Chari, Kehoe, and McGrattan (2005) and Francis and Ramey (2005b) on measurement issues and
Christiano, Eichenbaum, and Vigfusson (2003) and Gali and Rabanal (2004) on implications of the the
stationarity assumption.
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Instead of looking at labor productivity, I label innovations to permanent output (per

capita) as “technology shocks” for the following reason: The predictions of standard models

– RBC or New Keynesian – for output and interest rates remain identical, even when non-

technology shocks have permanent effects on output. Appendix D argues in more detail

how non-technology candidates such as government spending or changes in the workforce

composition (Francis and Ramey 2005b) pose the same output interest rate puzzle as

technology shocks do. If hours are stationary, there are no non-technology influences

on permanent output and my identification is actually equivalent to Gali’s definition.9

Unit root tests for quarterly hours data, even favor the view of stationary hours over

my sample.10 Not using hours data makes it also possible to use a monthly instead of a

quarterly VAR.

The identifying restriction is that the first row of A(1)−1Q is full of zeros, except for a

positive entry in its first column11:

A(1)−1Q =




a11 0 0 0

· · · ·
· · · ·
· · · ·




where a11 > 0

Together with the orthogonality of the structural shocks, this identifies the first column of

Q, which is then computed as in Blanchard and Quah (1989)12.

9This is easy to see from yt = (yt − lt) + lt where lt are log hours (per capita). A stochastic trend in
output will be identical to the one of labor productivity if lt ∼ I(0).

10The results are not reported here, but can be found at http://www.elmarmertens.ch/thesis.
11This number corresponds to the square root of the zero-frequency spectral density of output growth.

Dots represent otherwise unrestricted numbers.
12An alternative method, yielding the same results, would be the instrumental variables regressions of

Shapiro and Watson (1988). This framework is more amenable to include overidentifying restrictions, such
as the orthogonality of technology and monetary shocks. See the Appendix C for a description.
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2.2 Monetary Shocks

Again following standard conventions, monetary shocks are defined as unexpected devi-

ations from endogenous policy. With the Fed Funds rate as policy instrument, they are

unexpected Taylor-rule residuals, just as in Christiano, Eichenbaum, and Evans (1999) or

Rotemberg and Woodford (1997). Strictly speaking, I do not identify such shocks myself.

Rather, the measure of Romer and Romer (2004) is hooked up as a fourth variable mt to

my VAR.13 This allows to keep the VAR small, whilst the measure of the Romers takes

care of the Fed’s information about future activity and inflation – variables which typi-

cally influence endogenous policy. Without that information, my small VAR would likely

produce the “price puzzle” by confounding an anticipatory increase in interest rates with

an exogenous policy move14.

Romer and Romer have recently constructed a measure from minutes of the Federal

Open Market Committee (FOMC) and the Greenbook of the Federal Reserve Board of

Governors15 (Fed) which explicitly accounts for the Fed’s policy intentions and for the

Fed’s anticipation of future inflation and activity. The series has been constructed for

each FOMC meeting from 1964 to 1997. It is based on a series of “Intended Fed Funds

rates”16 for each FOMC meeting. Their policy measure is the residual from a regression

of these policy intentions on Greenbook forecasts of activity and inflation. The details are

described by Romer and Romer (2004) and the insightful discussion by Cochrane (2004).

13mt in corresponds to εm
t in equation (14) of Romer and Romer (2004). The data is available from

their website.
14The VAR would spuriously document inflation to rise in response to a monetary tightening. That is

the price puzzle. A partial but classic response would be to include inflation-forecasting variables, like
commodity prices (Christiano, Eichenbaum, and Evans 1999). See Hanson (2004) and Giordani (2004) for
a critical discussion.

15The Greenbook publishes forecasts by the Fed’s staff for future real activity and inflation.
16In constructing the series from FOMC minutes (prior to official targets) Romer and Romer (2004)

found that even when the Funds rate was not the official policy instrument, policy makers’ thinking was
fairly well shaped around informal fund rate targets. This supports the identification of policy shocks from
interest rates over a period which featured different schemes of official monetary policy making (Bernanke
and Blinder 1992; Bernanke and Mihov 1998).
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Comparing the Romer series against technology shocks estimated from a three-variable

VAR using only output growth, inflation and nominal rate shows that the two series are

virtually uncorrelated. This squares nicely with the survey of McCandless and Weber

(1995) who find no long-term effects of monetary policy on the real economy. Likewise the

estimated technology shocks are very similar whether they are estimated from a VAR with

or without the Romer series. Appendix C lays out a test strategy following Shapiro and

Watson (1988) and cannot reject that the Romer measure is orthogonal to the technology

shocks. The two identification strategies barely interfere with each other. My technology

shocks would be estimated to be practically the same when disregarding the Romer measure

and vice versa. For convenience only, I impose orthogonality in sample by projecting the

Romer measure off the technology shocks as explained below. The Romer measure series is

not iid and contains some persistence which is pruned by including it in the VAR similarly

as it is done by Romer and Romer (2004) themselves.17

Formally, the normalized monetary shock is the standardized residual εm
t obtained from

projecting the forecast error of the VAR’s Romer equation, em
t the fourth element of et in

(3), off the technology shocks (denoted εz
t ):

em
t = βzε

z
t + ε̃m

t

εm
t ≡ ε̃m

t /
√

Var(ε̃m
t )

The second column of Q is then filled up with the slopes of regressing the forecast errors

et onto the time series of monetary shocks εm
t .18

17Romer and Romer (2004) use the cumulated series of mt instead which is by construction a unit root
process. This would however interfere with the long-run identification scheme of the technology shocks.

18This regression follows from et = Qεt and the orthogonality of the structural shocks. Even though the
regression of et on εt is multivariate, it follows from the Frisch-Waugh-Lowell Theorem, that the regression
slopes can be computed from separate, univariate regressions as well.
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2.3 Inflation Persistence Shocks

Inflation persistence is a pertinent feature of the data (Fuhrer and Moore 1995a) but the

nature of shocks and transmission channels behind this phenomenom are subject of an

ongoing debate. For example, Chari, Kehoe, and McGrattan (2000) and King and Dotsey

(2006) try to link inflation persistence to particular forms of nominal stickiness in the

economy. A different approach is taken by the flexible price model of Dittmar, Gavin, and

Kydland (2005), where inflation persistence is a function of the central bank’s interest rate

policy.19

Inflation persistence is also an important characteristic of fluctuations in my VAR

which are not captured by technology and monetary shocks. Looking at the forecast error

variance of inflation between the 2 and 20 years, half of these persistent fluctuations are

unexplained. I am concerned with the associated comovements in output and interest

rates and given the uncertain sources of inflation persistence an agnostic scheme has been

chosen for the identification. Building on Uhlig (2004a, 2004b), the shock to “inflation

persistence” is constructed to explain the most of inflation’s forecast error variance over a

horizon of 2 to 20 years and to be orthogonal to technology and monetary policy errors.

The sign of the shock is determined by making it raise inflation on impact. Details of the

computations behind this procedure are described in Appendix B. In implementing the

aforementioned orthogonality constraint, I extend the eigenvector computations used by

Uhlig (2004b).

The scheme is agnostic is that it allows for the various sources of inflation persistence

listed above. In a modest interpretation, it merely groups together a large part of fluc-

tuations unexplained by technology and Romer shocks based on their effect on inflation

persistence. This “shock” captures very well the persistent fluctuations not driven by tech-

nology and monetary policy. What is more, it turns out to be an important source for

output interest rate comovements, too.

19Related ideas have been expounded also by Dotsey (1999) and King and Lin (2005).
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2.4 Decomposition of BC-Filtered Covariances

Summarizing the previous discussion, the impulse responses of the unfiltered variables in

Yt are given by H(L)A(L)−1Q. These do not only trace out the business cycle responses

of Yt to the structural shocks εt, but also how the shocks induce growth as well as high-

frequency variations. The motivation for bc-filtering is now to focus only on the business

cycle effects.20 Formally, it remains to apply a bc-filter and to decompose the filtered

lead-lag covariances into the contributions of the structural shocks. The computations are

straightforward to perform in the frequency domain. A classic reference for the necessary

tools is Priestley (1981). Similar techniques are employed by Altig et al. (2004) and Chari,

Kehoe, and McGrattan (2006).

The analysis is applicable to a wide class of bc-filters, including the HP-Filter, the

approximate bandpass filter of Baxter and King (1999) as well as the exact bandpass filter.

For the computations it is key that the bc-filter can be written as a linear, two-sided,

infinite horizon moving average whose coefficients sum to zero:21

Ỹt ≡ B(L)Yt

where B(L) =
∞∑

k=−∞
BkL

k

20Business cycle filters have also been criticized for creating spurious cycles, originally by Harvey and
Jaeger (1993) and followed by Cogley and Nason (1995) as well as in the discussion between Canova
(1998a, 1998b) and Burnside (1998). Whilst most of these papers focused on the HP filter, their analysis
also applies to the bandpass filter. But the bc-filtered statistics employed here can be perfectly justified
from the perspective of model evaluation in the frequency domain: The goal is not to match data and
model over all spectral frequencies, but only over a subset which is associated with “business cycles”. For
the U.S. this is typically taken to be 6 to 32 quarters following the NBER definitions of Burns and Mitchell
(Baxter and King 1999; Stock and Watson 1999). Formal concepts of model evaluation in this vein have
been advanced by Watson (1993), Diebold, Ohanian, and Berkowitz (1998), as well as Christiano and
Vigfusson (2003). Using the concept of the pseudo-spectrum this extends also to nonstationary variables,
notwithstanding the analysis of Harvey and Jaeger.

21Of course, some coefficients Bk can be zero. So B(L) could also be the first-difference filter. But mean-
ingful bc-filters should also be symmetric, such that they have a zero phase shift. Otherwise, comovements
over one frequency band, say business cycles, could be attributed by the filter to other frequencies, like
growth.
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and B(1) = 0

The bandpass-filter is a such a symmetric moving average. It is explicitly defined in the

frequency domain and most of my calculations are carried out in the frequency domain.

For frequencies ω ∈ [−π, π], evaluate the filter at the complex number e−iω instead of the

lag operator L. This is also known as the Fourier transform of the filter which represents

it as a series of complex numbers (one for each frequency ω). Requiring B(1) = 0 sets the

zero-frequency component of the filtered time series to zero. For instance, the bandpass

filter22 passes only cycles between two and a half and eight years. For monthly data, it is

specified as follows:

B(e−iω) =





1 ∀ |ω| ∈ [
2π

8·12
, 2π

2.5·12

]

0 otherwise

Since the bc-filtered variables in Ỹt are covariance-stationary, their lead-lag covariances

exist and so does their spectrum. They can be computed from the VAR parameters and

the filters H(L) and B(L). To ease notation, the impulse responses of Y after applying

the bc-filter are written as

C̃(L) ≡ B(L)H(L) A(L)−1 Q

22Alternatively, the HP filter approximates a high-pass filter (King and Rebelo 1993) and its Fourier
transform is

B(e−iω) =
4 λ (1− cos(ω))2

1 + 4 λ (1− cos(ω))2

where λ is a smoothing parameter, conventionally set to 1600 for quarterly data. Likewise, the approximate
Bandpass-Filter can be implemented by computing the Fourier transform of the (truncated) lag polynomial
B(L) described by Baxter and King (1999).
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so that the bc-filtered spectrum can be expressed as

SỸ (ω) = C̃(e−iω) C̃(e−iω)′ (4)

For each frequency ω, this is simply a product of complex-numbered matrices23. The lead-

lag covariance matrices of Ỹt can be recovered from the spectrum in what is known as an

inverse Fourier transformation

Γk
Ỹ
≡ EỸtỸt−k

=
1

2π

∫ π

−π

SỸ (ω) eiωkdω (5)

which can be accurately and efficiently computed using well-established algorithms24.

Since the structural shocks are orthogonal to each other, the decomposition of the co-

variances Γk
Ỹ

is straightforward. First, the spectrum is computed conditional on each shock.

Then, the conditional lead-lag covariances follow from an inverse Fourier transformation,

analogously to equation (5). To fix notation, the shocks are indexed by s and Js is a square

matrix, full of zeros except for a unit entry in its s’th diagonal element. The spectrum

conditioned on shock s is

SỸ |s(ω) = C̃(e−iω) Js C̃(e−iω)′ (6)

23The transposes are conjugate transpose, i.e. they flip also the sign of the imaginary components.
24In Matlab for instance, fast Fourier algorithms are encoded in fft and ifft. For ω I use an evenly

spaced grid over the unit circle with 1024 respectively 512 elements depending on the persistence of the
VAR (the discrete fast Fourier algorithms behind fft and ifft work best for powers of 2). Here is a rule
of thumb for the accuracy of the discretized Fourier transformation: Call n the number of grid points and
λ the largest eigenvalue (in absolute terms) of the VAR’s companion matrix. λn should be numerically
close to zero to ensure accuracy over the entire range of frequencies. The reason is that discretizing
the frequencies over [−π; π] is analogous to approximating the complete dynamics by a finite number
of impulse responses. For stationary variables, the impulse responses ultimately converge to zero. The
rule of thumb picks n large enough to capture this. Computations can be sped up dramatically using
SỸ (ω) = SỸ (ω)′ = SỸ (−ω)T (where T is the simple, non-conjugate transpose) and by computing the
spectrum only for frequencies where B(e−iω) 6= 0.
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Since
∑

s Js = I the conditional spectra add up to SỸ (ω). This carries over to the coeffi-

cients Γk
Ỹ |s ≡ E(ỸtỸt−k|s) from the inverse Fourier transformation of SỸ |s(ω).

∑
s

Γk
Ỹ |s = Γk

Ỹ

This VAR framework is also capable of handling unit roots in Yt. By construction,

H(L) and thus Yt has a unit root such that H(1) is infinite. For computing the bc-filtered

spectrum SỸ (ω) in (4), B(1) = 0 takes precedence over this unit root. It is straightforward

to check that H(eiω) is well defined everywhere, except at frequency zero. So we can think

of the nonstationary vector Yt as having a pseudo-spectrum SY (ω) = C(e−iω) C(e−iω)′

where C(L) = H(L) A(L)−1 Q and which exists for every frequency on the unit circle

except zero. Similar remarks apply to potential unit roots in the VAR such that some

element(s) of A(1) would be zero. As long as the solutions to the characteristic equation

A(z) = 0 are on or outside, but not inside the unit circle, the computations above run

through. Higher orders of integration, i.e. powers of unit roots (1 − L)d where d is an

integer, thus fit in this framework as well.25

3 Results

This section presents the results for the VAR described in the previous section. Monthly

data is taken from FRED26 on per-capita output (real Industrial Production), CPI inflation

and the average nominal yield on three-month T-Bills for the U.S. from 1966 to 1996.27

25Even for a nonstationary VAR, the OLS estimates of its coefficients in A(L) are consistent, they would
even be super-consistent. The roots of A(z) are the inverse of the eigenvalues to the VAR’s companion
form matrix. The only computational issue is that this cannot handle VARs whose point estimates imply
companion eigenvalues outside the unit circle.

26Federal Reserve Economic Data, maintained by the Federal Reserve Bank of St. Louis (http://
research.stlouisfed.org/fred2/).

27Output growth, inflation and interest are all expressed in annualized log-percentage rates. it = log(1+
It/100), ∆yt = 12 · (log Yt − log Yt−1) and πt = 12 · (log Pt − log Pt−1) where It is the annualized nominal
yield in percent, Yt and Pt are the levels of real per-capita Industrial Production, respectively the PCE
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This sample is determined by the availability of the Romer shocks. Industrial production

data is used in order to have a monthly data set, similar results are obtained from quarterly

data using GDP data, albeit with reduced statistical significance.28 Except for the interest

rates all data is seasonally adjusted in this study. The VAR is estimated with 12 lags to

ensure uncorrelated residuals. (See Appendix A for lag-length selection.) After accounting

for initial values, the sample covers the period from 1967 to 1996.

To assess the statistical significance of the results, bootstrapped confidence intervals are

computed for each shock. As discussed by (Sims and Zha 1999) these are best interpreted

as the posterior distributions from a Bayesian estimation with flat prior. The small sample

adjustment of Kilian (1998) is used to handle the strong persistence of the VAR29. In a

first round, the small sample bias of the VAR coefficients is estimated from 1, 000 Monte

Carlo draws. In the second round, the posterior distribution is constructed from 2, 000

draws using the VAR adjusted for the small sample bias. The procedure follows exactly

Kilian (1998) where further details are given.

For the long-run identification it is important that all elements of Xt are stationary.

The critical elements of Xt are here inflation and the nominal rate. Given their low power

it is no wonder that standard Dickey-Fuller tests cannot reject the presence of a unit root

in these variables. In the VAR context it is however more appropriate to use the covariate-

augmented Dickey Fuller test of Hansen (1995), which has more power. It tests for the

presence of unit roots directly in the context of the VAR equations and resoundingly rejects

the unit root hypothesis.3031

price deflator, as reported by FRED.
28Again, these additional results are available from the author upon request respectively at http:

//www.elmarmertens.ch/thesis.
29The largest root equals 0.979, see Table 2 in Appendix A. Furthermore, a rejectance sampling is applied

considering only stable VARs such that the long run restrictions can be applied.
30The t-statistics are −11.87 for inflation, respectively −2.89 for the nominal rate and the associated

“ρ2” statistics are 0.43 and 0.54 which makes both t-statistics significant at the 1%, respectively 5% level.
31As a robustness check, an alternative VAR has been specified allowing for a common trend in inflation

and nominal rate. This specification yields qualitatively similar results to those obtained here. (The
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http://www.elmarmertens.ch/thesis
http://www.elmarmertens.ch/thesis


3.1 Real Interest Rate and Output

A key result of this paper is that technology shocks induce a strongly pro-cyclical real rate

which is also a positive leading indicator for up to one year. This is depicted in Figure 2

which decomposes the filtered covariances between output and the real rate. Covariances

add linearly, so they are a natural measure for the decomposition. The total covariances

in Figure 2 are just a rescaling of the correlations reported in Figure 1 above.

Figure 2 shows further that monetary shocks induce negative covariances at leads be-

tween zero and a year and a half. Overall, monetary shocks appear to play a much smaller

role in terms of explaining the overall covariation. Since they are essentially defined as

the Fed rolling dice, it is no wonder that their impact is comparably small. Qualitatively

similar, but quantitatively stronger are the comovements due to the inflation persistence

shock. It causes the real rate to be strongly anti-cyclical and to be a negative leading

indicator.

It is ambiguous to put a number like “percentage explained” on the decompositions,

since covariances can be negative as well as positive. For a large part, the technology

effects are offset by the covariances conditional on monetary shocks so that the shock to

inflation persistence tracks the overall autocovariance function pretty well. But clearly,

substantial comovements are induced by technology and monetary shocks, too. (Variance

decompositions are discussed further in Section 3.3 below.)

Both the monetary autocovariances as well as those caused by the inflation persistence

shock are highly significant, see Figure 3 respectively 4. But there is much larger un-

certainty associated with the technology shocks (see Figure 5). This is a general feature

of inference on long run effects in VARs (Christiano, Eichenbaum, and Vigfusson 2006).

The 90% confidence interval covers zero practically at all leads and lags. Since the early

inflation persistence shock has been replaced there with a permanent shock to inflation.). The results are
available on http://www.elmarmertens.ch/thesis.
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days of VARs, Sims (1987) has already advocated studying the shape and location of the

posterior distribution instead of critical values alone. Indeed, the posterior distribution of

cov (ỹt, r̃t−k) is highly skewed and clearly concentrated in the region of positive values for

k between zero and one year.

3.2 Nominal Interest Rate and Output

Turning to the nominal rate, it is striking that only monetary and inflation persistence

shocks give rise to sizeable comovements with output, see Figure 6. The autocovariance

functions associated with the two shocks are qualitatively similar to the overall behavior of

a pro-cyclical nominal rate which is an inverted leading indicator for output after half a year

and more. As for the real rate, these conditional autocovariances are clearly significant,

see Figure 3 and 4. Qualitatively, technology shocks lead to a positively leading nominal

rate, but these comovements are very small.

3.3 Impulse Responses and Forecast Error Variances

So far the cyclical behavior of output and interest rates has been described in terms of

bandpass-filtered covariances. This subsection reports results on impulse response and

variance decompositions for the unfiltered variables which corroborate the preceding anal-

ysis.

The first column of Figure 7 plots the response of Yt to a monetary policy shock. The

shock leads to a contractionary increase in nominal and real interest rates for about a year

which is followed by contractionary effects on output and inflation, which is similar to the

results of Romer and Romer (2004). (Cochrane (2004) discusses the initial price puzzle

evident in his and mine calculations.) This is consistent with counter-cyclical, negatively

leading interest rates as found above for the bandpass filtered data.
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By construction, the technology shock raises output permanently. The second column

of Figure 7 shows that this growth is accompanied by a significantly increased real rate

for one to two years, which again matches the evidence discussed earlier. Because of the

non-trivial effects of bc-filtering32 it is not a foregone conclusion, that the picture emerging

from the impulse responses should mirror the results for the bc-filtered comovements as it

does here.

In order to better understand the shocks and transmission channels behind the infla-

tion persistence shock, it is useful to study the associated impulse responses in the third

column of Figure 7. Due to the sign restriction inflation increases on impact and – not

necessarily but neither surprisingly – stays consistently positive for more than two years.

This persistent rise in inflation is met by a very persistent increase in nominal rates, which

is however not sufficiently commensurate to keep real rates from falling below steady state

for up to a year33. Real activity is accordingly stimulated for slightly more than two years.

In my interpretation, these are instances of the Fed responding (at least initially) with an

insufficient interest rate policy to expansionary shocks, like government spending. Adverse

supply shocks are hardly compatible with this situation since both activity and inflation

are increased.

As argued earlier, it is hard to measure “shares explained” for the covariance decom-

positions. Looking at the variance decompositions reported in Table 1, it is however clear

that all three shocks are important for explaining movements in the VAR and that the

unexplained remainder is very small. Looking at the bc-filtered variances in the bottom

panel, technology is the key driver behind real rate fluctuations. It explains almost half of

their bc-filtered variance. Monetary policy shocks and the inflation persistence shock ex-

plain each about half the fluctuations in the nominal interest rate, whereas the explanatory

power of technology shocks is close to zero. Interestingly, at the bc-frequencies, technol-

32For a critical discussion see for instance Canova (1998a) or King and Rebelo (1993).
33Except for a brief positive spike in the seventh month.
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Table 1: Variance Decompositions

Shocks

MP Tech InfP Rest

From 1 to 12 lags

y 3.80% 39.49% 48.85% 7.86%
i 41.10% 0.99% 48.92% 8.99%
r 27.98% 50.02% 14.70% 7.31%
π 5.66% 51.41% 32.08% 10.85%

From 1 to 60 lags

y 7.62% 75.73% 13.59% 3.06%
i 17.67% 3.66% 73.98% 4.69%
r 25.83% 32.18% 32.50% 9.49%
π 9.94% 43.19% 37.88% 8.99%

From 1 to 120 lags

y 3.13% 88.17% 7.44% 1.26%
i 18.17% 4.55% 72.44% 4.85%
r 23.19% 29.35% 39.06% 8.41%
π 9.77% 41.13% 40.39% 8.70%

From 24 to 240 lags

y 0.82% 96.96% 1.92% 0.30%
i 6.04% 10.37% 82.13% 1.46%
r 15.03% 9.23% 69.54% 6.19%
π 26.05% 23.42% 43.15% 7.38%

Total Variance

y 0.00% 100.00% 0.00% 0.00%
i 18.09% 4.58% 72.49% 4.83%
r 23.12% 29.18% 39.31% 8.39%
π 9.82% 41.08% 40.40% 8.70%

Total BC-Variance

y 22.25% 16.69% 57.45% 3.61%
i 45.57% 2.76% 45.37% 6.30%
r 21.92% 45.75% 26.21% 6.12%
π 17.81% 25.69% 54.57% 1.93%

Note: Variance decompositions computed from the VAR described in Section 2. “MP” is the monetary
policy shock and “InfP” the inflation persistence shock. The latter is computed as discussed in Section 2.3
based on the forecast error window from 24 to 240 lags. “BC-Variance” is bandpass filtered variance.
Monthly lags.
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ogy explains only about 17% of output fluctuations, the bulk being accounted for by the

inflation persistence shock with 57%. The unfiltered variations in the VAR’s forecast er-

rors yield qualitatively similar decompositions, except that technology shocks account for

an ever increasing share in output variations. Please recall that the technology shock is

constructed to completely account for output movements in the long run.

4 Related Literature

To overcome the output-interest rate puzzle, Beaudry and Guay (1996) and Boldrin, Chris-

tiano, and Fisher (2001) propose models with habit preferences and frictions to capital ac-

cumulation respectively sectoral factor immobility. This matches the real rate evidence by

tweaking the transmission mechanism for a single kind of shock, namely technology. But

the evidence presented in this study, suggests that the standard RBC mechanism for tech-

nology works fine.34 It is rather the interaction of several shocks leading to the “puzzling”

evidence.

In this spirit, Rotemberg and Woodford (1997) report success with decision lags in a

sticky price model35. The only structural shock they identify are disturbances to monetary

policy. But their solution to the output-interest rate puzzle is based on the interaction

with other shocks, which are left unidentified. This is revealed by their impulse response

functions (Rotemberg and Woodford 1997, Figure 1). Following a monetary shock, their

model’s output responses are negative (respectively zero) at all lags whilst they are positive

34Beaudry and Guay (1996) recognize the importance of conditioning on technology, too. They use
cointegrating properties between output, consumption and investment derived by King et al. (1991), which
are similar in spirit to my specification described in Section 2.1. When conditioning on these permanent
shocks, they report negative correlations between output growth and the unfiltered real rate. Since growth
rates amplify high-frequency fluctuations instead of focusing on business cycle characteristics, these results
are hardly comparable to my approach and the puzzle framed by King and Watson (1996).

35Rotemberg and Woodford (1997) look only at output and the nominal rate. They use linear detrending
instead of the stochastic procedures considered here. Still they find similar patterns of covariation and
juxtapose their results to the puzzle posed by King and Watson (1996).
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for the nominal rate. Since conditional lead-lag covariances are just convoluted impulse

responses, they are negative (respectively zero) at all leads and lags. This contrasts with

the changing signs in the unconditional covariances depicted in my Figure 1 respectively

their Figure 2.

Likewise, Fuhrer and Moore (1995b) model the inverted leading indicator property of

interest rates with multiple, non-structural shocks and couch their analysis just in terms of

unconditional statistics. My paper is an empirical attempt to disentangle the underlying

interaction of the various structural shocks.

5 Conclusions

An economic model specifies restrictions on how the economy responds to exogenous forces.

Data may not conform to these predictions, either because the specified responses are

wrong, or because the set of forces considered in the model does not sufficiently capture

those impinging on the real world (or both).36 King and Watson (1996) report an output-

interest rate puzzle, because of discrepancies in the unconditional correlations of output

and interest rates in U.S. data and a variety of calibrated models. But it appears in a

different light, once the bc-statistics are conditioned on structural shocks. At the root of

the “puzzle” are not so much the transmission mechanisms of their models, but rather the

interaction of several shocks37. Three points stand out:

36A case in point is how Christiano and Eichenbaum (1992) add government spending shocks to RBC
theory to resolve the Dunlop/Tarshis/Keynes debate on the overall cyclicality of real wages. See between
Dunlop (1938), Tarshis (1939) and Keynes (1939), the issue is also summarized by Sargent (1987, p. 487).
Another example for solving the same puzzle with multiple shocks is how Baxter and King (1991) enrich
the RBC model with demand shocks.

37Another line of attack in this area has been opened by Dotsey, Lantz, and Scholl (2003) by pointing
out that the real rate evidence is sensitive to the choice of price deflator used for constructing the real
rate. The widely reported anti-cyclicality of the real rate is particularly strong when deflating with the CPI
which has been used in this paper, too. It is a-cyclical or weakly pro-cyclical using the deflator for personal
consumption expenditures (PCE). I can replicate this with my VAR, too. However, the basic results for
conditional comovements between output and real rate remain valid. These alternative results for the PCE
deflation are available from the author upon request or can be found at http://www.elmarmertens.ch/
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Conditional on technology shocks, the comovements between output and real rate lines

up fairly well with standard models, be it the standard RBC model or the technology

channel of textbook New-Keynesian models as studied by Gali (2003), Walsh (2003) or

Woodford (2003). For all specifications considered, the contemporaneous correlation be-

tween (bc-filtered) real rate and output is positive. Likewise, the real rate is a positive

leading indicator of output for almost two years. Unconditionally, the real rate is widely

reported to be just the opposite – namely counter- or a-cyclical and a negative leading

indicator. Attempts to match this only with technology shocks appear to be going in the

wrong direction.38 The overall behavior must be the outcome of an interaction of several

shocks. Indeed:

When conditioning on monetary shocks, the real rate is counter-cyclical and a nega-

tive leading indicator as predicted by the simple New-Keynesian models. Such opposing

responses to “supply” and “demand” shocks are a general theme in Keynesian models

(Bénassy 1995).

Sources of inflation persistence make up for the bulk of comovements not explained

by technology and monetary shocks. In particular, they explain most of the comovements

between output and the nominal rate. They are also responsible for the overall anti-cyclical

real rate. Models need to include other shocks than technology and monetary policy errors

to explain these effects.

thesis.
38See for instance the RBC modifications of Beaudry and Guay (1996) and Boldrin, Christiano, and

Fisher (2001) with habit preferences and frictions like capital accumulation and sectoral factor immobility.
Beaudry and Guay (1996) recognize the importance of conditioning on technology. But since they use a
quite different detrending method their results of a counter-cyclical real rate even after conditioning on
technology are hard to compare with the results in this study. See also Footnote 34.
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Appendix

This appendix contains details of the VAR lag-length selection (A), identification of “in-

flation persistence” shocks (B), tests for long run effects of monetary policy on output (C)

and further arguments for conditioning on permanent shocks to output instead of labor

productivity (D).

A Lag-Length Selection

Specification of the VAR’s lag-length is based on various criteria. As whiteness of the

residuals is key for the auto-covariances, I focus in particular on Portmanteau tests.39

Another aspect is how well the unconditional, filtered covariances of the data are matched

by their VAR analogues. This is an indirect measure for how well the VAR estimates the

relevant frequency bands of the data’s spectrum.

For the benchmark VAR with four variables, equation (2) of Section 2, the portmanteau

tests require a lag-length of at least p = 12 (one year) as reported in Table 2 which coincides

with the AIC’s recommendation but is much higher than the one lag, advocated by SIC or

HQIC. With 30 years of monthly data, 12 lags leave sufficiently many degrees of freedom

to the VAR. Figure 8 shows how well this fits the sample bc-moments of the data.

Based on these results, a lag-length of p = 12 is used. The estimated VAR coefficients

are reported in Table 3. Figure 9 plots the autocorrelations of the forecast errors, which are

practically zero. Figure 10 shows the VAR’s autocovariance function and the associated

confidence intervals.

39Since their large sample distribution tends to over-reject dramatically, I follow Altig et al. (2004) and
bootstrap critical values.
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Table 3: Estimated VAR Coefficients

VAR Equation for

Variable ∆y π i m

∆yt−1 0.1863∗∗∗ 0.0127 0.0097∗∗∗ −0.0010
πt−1 0.1194 0.2468∗∗∗ 0.0011 −0.0000
it−1 2.5517∗∗ 0.6748∗ 1.2228∗∗∗ 0.0932∗
mt−1 0.6108 −0.2873 0.3825∗∗∗ 0.0039
∆yt−2 0.0611 −0.0323∗ 0.0058∗∗ 0.0021
πt−2 −0.1126 0.1053∗ −0.0120 0.0003
it−2 −0.3144 0.0618 −0.6004∗∗∗ −0.2039∗∗∗
mt−2 −2.3311 −0.2213 0.1672∗∗ 0.0151
∆yt−3 0.0863 0.0332∗∗ −0.0010 −0.0003
πt−3 −0.2554 0.0428 0.0088 −0.0029
it−3 −1.5820 −0.1213 0.4643∗∗∗ 0.1988∗∗∗
mt−3 −2.8398∗ 0.7229 −0.0211 −0.0647
∆yt−4 0.0819 0.0137 −0.0012 0.0006
πt−4 −0.2152 0.0271 −0.0196∗∗ −0.0180∗∗∗
it−4 −2.5844 0.2581 −0.3229∗∗∗ −0.1333∗
mt−4 −0.7082 −1.2555∗∗ 0.1530∗ 0.0294
∆yt−5 −0.1286∗∗ −0.0145 0.0063∗∗ 0.0018
πt−5 0.0577 0.0625 0.0363∗∗∗ 0.0158∗∗
it−5 3.2792∗ 0.1689 0.5012∗∗∗ 0.0433
mt−5 −2.3493 −0.7171 −0.2111∗∗∗ −0.1477∗∗
∆yt−6 0.0053 0.0053 −0.0018 −0.0016
πt−6 −0.1400 0.0670 −0.0090 0.0008
it−6 −0.9947 −1.3757∗∗ −0.6228∗∗∗ −0.1268
mt−6 −0.9146 −0.2910 0.0260 0.0562
∆yt−7 −0.0971∗ −0.0483∗∗∗ 0.0001 0.0007
πt−7 0.0138 0.0807 0.0328∗∗∗ 0.0022
it−7 1.3623 0.9634 0.2419∗∗ 0.1321∗
mt−7 −1.5928 −0.0915 0.1287 0.0376
∆yt−8 0.0136 0.0004 −0.0001 0.0023
πt−8 0.1097 −0.0396 −0.0055 −0.0077
it−8 −1.6328 −0.5389 0.0447 0.0187
mt−8 −3.0411∗ 0.9633∗ 0.1150 0.0770
∆yt−9 0.1075∗ −0.0140 0.0061∗∗ 0.0041∗
πt−9 −0.1457 0.2052∗∗∗ 0.0113 0.0069
it−9 4.0078∗∗ 0.7068 0.1857∗∗ 0.0758
mt−9 −3.6653∗∗ −0.9485∗ 0.0012 −0.1754∗∗∗

∆yt−10 0.0090 0.0102 −0.0004 −0.0024
πt−10 −0.3008∗ −0.0079 −0.0199∗∗ −0.0075
it−10 −5.4376∗∗∗ −0.3331 −0.2232∗∗ −0.0293
mt−10 −5.1382∗∗∗ −0.9265∗ −0.2128∗∗∗ −0.0855
∆yt−11 −0.0102 0.0139 0.0019 −0.0037∗
πt−11 0.0491 0.0668 0.0171∗ −0.0034
it−11 0.8793 0.1212 0.1904∗∗ −0.0479
mt−11 −0.8658 −1.1959∗∗ −0.0440 −0.0462
∆yt−12 −0.1066∗∗ 0.0063 −0.0006 0.0004
πt−12 −0.0731 −0.0884∗ 0.0025 0.0092
it−12 0.5625 −0.5413 −0.1164∗∗ −0.0112
mt−12 −0.7876 −0.6832 −0.3017∗∗∗ −0.0704
const 4.9607∗∗∗ 0.9551∗∗ −0.0330 −0.0422

System Statistics

lags: 12
obs: 359
det(Ω): 2.1396
llf: −2174.1274
AIC: 13.2041
SIC: 15.3242
HQIC: 14.0471

Note: ∗∗∗, ∗∗ and ∗ denote significance at the 1%, 5% respectively 10% level. Ω is the variance-covariance matrix of the VAR’s forecast errors.
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B Identification of Persistence Shocks

This section describes the identification of the inflation persistence shocks. These are con-

structed as the single disturbance which maximizes the forecast error variance of inflation

between the 2 to 20 year horizon and which is orthogonal to the previously identified shocks

to technology and monetary policy. I extend the method of Uhlig (2004b) to accommodate

this orthogonality constraint.

For this method it is convenient to express the identification in terms of an orthonormal

matrix Q̃ and not in terms of the matrix of impact coefficients Q defined in equation (3)

above. These two are related via the Cholesky decomposition40 of the VAR’s forecast error

variance, Σ = Eete
′
t:

Ψ ≡ chol (Σ)

Q̃ ≡ Ψ−1Q

By construction we have Q̃Q̃′ = I.

We seek the third column of Q̃, associated with the inflation persistence shocks, given

the first two columns of Q containing the impact coefficients of technology and monetary

shocks. This third column of Q̃ solves the following variance maximization problem

max
q̃

h′π

(
240∑

k=24

CkΨq̃ q̃′Ψ′C ′
k

)
hπ (7)

= q̃′
(

240∑

k=24

C ′
kΨ

′h′π hπΨCk

)

︸ ︷︷ ︸
≡S

q̃ (8)

40The Cholesky decomposition is the unique triangular factorization of a positive definite matrix. Ψ is
lower triangular and we have Σ = ΨΨ′ = QQ′.
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subject to

q̃′q̃ = 1 (9)

(Ψ−1Q12)
′ q̃ = 0 (10)

where Ck are the coefficients of the VAR’s vector moving average representation

C(L) =
∞∑

k=0

CkL
k = A(L)−1

Q12 contains the previously identified columns of Q and hπ selects inflation from the VAR

defined in (2):

hπ =

[
0 1 0 0

]′

Uhlig (2004b) solves the above problem without the orthogonality constraint (10). In

this case the problem reduces to finding the largest eigenvector of the positive definite

matrix S defined in (8) with q̃ being its normalized eigenvector.

I extend his computations to handle the orthogonality constraint (10) as follows. Let

B be an orthonormal basis for the nullspace of Ψ−1Q12. Such a matrix is easily com-

puted using algorithms based on the singular value decomposition41 of Ψ−1Q12. The set of

permissible vectors q̃ is then

{q̃ : q̃ = Bz ∀ z ∈ Rn}

where n is the dimension of the nullspace (here: two, since there are two remaining columns

in Q).

Reparametrized in terms of z, the problem reduces to set z equal to the normalized

41See for instance the command null in Matlab.
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eigenvector of of B′SB associated with its largest eigenvalue, denoted z∗. All the necessary

computation are part of standard libraries for linear algebra and pose no particular burden

for the Bootstrap simulations.

The sign of z∗ (and thus the sign of the shock) is determined by making it raise inflation

on impact. Let Q3 denote the third column of Q. The sign of z∗ is then set such that the

second element of Q3 (the one associated with inflation) is positive. Q3 is computed from

Q3 = ΨBz∗

C No Long Run Effects of Monetary Policy

This section describes the tests for zero long run effects of the Romer series on real output.

This is an overidentifying restriction on the Romer coefficients in the VAR’s first equation

for output growth.

Long-run restrictions are most conveniently combined with overidentifying restrictions

using the analysis of Shapiro and Watson (1988).42 They showed how to cast long-run

restrictions into coefficient restrictions on an instrumental variables regression. Without

overidentifying restrictions, this is numerically equivalent to the matrix method of Blan-

chard and Quah (1989) used in the main text.

Without the overidentifying restriction, the long-run restriction can be implemented as

follows: The structural equation for output growth is

a(L)∆yt = W (L)




πt

it


 + k(l)mt + σzε

z
t (11)

42Christiano, Eichenbaum, and Vigfusson (2003) do not use overidentifying restrictions, but they get
also mileage out of the instrumental variables setup by recognizing nonstationary hours as a problem of
weak instruments.
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where 1/σz

[
a(L) −W (L) −k(l)

]
corresponds to the first row of Q−1A(L) in the notation

of equation (3).

Because of the correlation between the technology shock εz
t and it as well as πt and

mt, equation (11) cannot be estimated with OLS. But an instrumental variables regression

works where it, πt and mt are instrumented for by their own lagged values. The restriction,

that only εz
t has a long-run impact on yt imposes W (1) = 0 and k(1) = 0 (this eliminates

long-run effects of any other shocks than εz
t operating through it, πt and mt). The restricted

IV regression is estimated by replacing it, πt and mt with their differences using W (L) =

(1−L)W̃ (L) and k(l) = (1−L)k̃(l), which holds for some W̃ (L)43 and some k̃(l) whenever

W (1) = 0. This is nicely illustrated by Shapiro and Watson (1988) and Francis, Owyang,

and Theodorou (2003, Appendix A).

A zero effect of the Romer measure on permanent output means that k(1) = 0 without

the need to impose it. I estimate (11) imposing only W (1) = 0 but not k(1) = 0. The

Wald test for k(1) = 0 is insignificant with a p-value of 70%. Alternatively, technology

shocks can be estimated by dropping k(l) mt from (11) as in a three-variable VAR. mt

can then be added as an instrument. Hansen (1982)’s J statistic for the estimation with

efficient GMM cannot reject the overidentifying restriction. Using only mt as additional

instrument, the p-value is 33%. Using mt and 12 of its lags, the p-value is 48%.

43W̃ (L) has one lag less than W (L) see for instance Hayashi (2000, p. 564).
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D Discussion of “Technology Shocks”

Permanent shocks to output are labeled here as “technology shocks”. Conditional on these

shocks, the real rate is estimated to be pro-cyclical and a positive leading indicator of

output. This is in line with predictions of standard RBC and New Keynesian models for

technology shocks. (A common feature of these models is that they have a time-separable,

iso-elastic utility of consumption.)

The kind of labor augmenting technology shocks specified in these models is the sole

driver of permanent output if hours are stationary, otherwise they have to be identified

from the permanent component of labor productivity (Gali 1999).44 Given the physical

constraints of time, models sensibly assume hours to be stationary. Whether the post-war

sample of U.S. hours data is better approximated by a stationary or a unit root process

has generated an intense debate with good arguments on both sides.4546

What matters for the message of this paper, is whether the transmission mechanisms

of simple RBC or New-Keynesian models predict the same comovements in output and

interest rates for whatever shocks drive the stochastic trend in output.47 Non-technology

sources of stochastic growth in output are for instance permanent changes in government

44This is easily seen from the (typically assumed) Cobb-Douglas function for aggregate production.

In logs: yt = at + α(kt − lt) + lt

where yt is real output, at the technology shock, α the income share of capital, kt capital and lt are hours
(as throughout the paper, all quantities are per-capita). Stationarity of the capital-labor ratio is a key
restriction of balanced growth (which is a maintained hypothesis). Stochastic trends in output must thus
be coming either from technology and/or from hours.

45See for instance Gali and Rabanal (2004), Francis and Ramey (2005a) and Christiano, Eichenbaum,
and Vigfusson (2003).

46Using quarterly hours data over my sample, unit root tests favor the stationary specification, mostly
because the sample excludes the run-up in hours worked during the second half of the 1990’s. This was
reported in the previous Working Paper version of this chapter.

47Regardless of whether they are identified from labor productivity or output, my “technology shocks”
are based on estimating a stochastic trend. Against this practice, a deeper critique has been levied by
Chari, Kehoe, and McGrattan (2005) who are concerned with the large uncertainty and possibly misleading
results arising from estimates of long-run shocks and responses from VARs with limited lag lengths. My
paper implements its VAR with a limited lag length (8 lags) as well. It relies on obtaining good estimates
from this specification.
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spending or secular changes in workforce participation. These will now be discussed in

more detail.

Generally, the following mechanisms will be at work: In standard models the real

rate is proportional to expected consumption growth.48 All it takes for a pro-cyclical and

positively leading real-rate is that consumption is expected to be growing after a permanent

increase in output. This rising profile will then be reflected in a higher interest rate – both

in conjunction with the current increase in output and in anticipation of persistently higher

levels of output in the future.49 This applies both to the standard RBC as well as simple

New-Keynesian models. Of course, different utility functions, or frictions in the decisions

to consume/invest/work can change this prediction. My point is that the data is actually

consistent with the simple model’s predictions of a pro-cyclical and positively leading real

rate in response to permanent shocks to output.

Permanent shocks in government spending and their effects on output and interest rates

are analyzed Aiyagari, Christiano, and Eichenbaum (1992) within a neoclassical model.

Both output and real rate react positively.50 The same result can be found for the simple

New-Keynesian model, see for example Gali (2003).51

Francis and Ramey (2005b) argue that the potentially permanent movements in hours

per-capita are related to some secular changes in workforce participation: Increased school

48I have in mind models with standard preferences which are time-separable and iso-elastic. To a
first order, they imply rt = const + σEt∆ct+1 where rt and ct are the logs of the real rate respectively
consumption, and σ is the relative risk aversion.

49An obvious example would be permanent income effects from an increase in output. But note the subtle
language above: It is important that consumption is expected to be growing after the impact, on impact
disposable income may fall and thus can consumption. So the expected consumption growth may occur
from an initially lower level compared to before the impact. See Aiyagari, Christiano, and Eichenbaum
(1992) for the case of a permanent increase in government spending, which reduces disposable income.
In response to preference shocks to demand, Baxter and King (1991) also find a pro-cyclical, positively
leading real interest rate.

50The effects work out as follows: The permanent increase in spending leads to a drop in consumer’s
permanent income and thus in consumption. But the spending increase is also initially buffered by lower
investment and the thus increased marginal productivity of capital leads to higher interest rates and a
slowly increasing consumption profile. Together with higher work effort, output rises, too.

51Gali (2003) specifies only a temporary shocks in government spending, but it is straightforwardly
extended to a unit root process.
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years, longevity of retirees (but unchanged retirement age) as well as increased government

employment. Their suggestion is to prune the conventional per-capita units from these

effects. Instead of dividing quantities by the entire civilian population of age 16 and older,

this would account only for the population available for production in the private sector.

Implicitly, this does not only redefine hours per-capita but also output per-capita. For a

business-cycle model, such secular workforce effects are indeed best viewed as exogenous

shifts in effective labor supply.

My estimated correlations pertain to conventionally measured per-capita output. To

introduce some notation, Yt, Ct, Kt and Nt are conventionally measured per-capita output,

consumption, capital and hours. N̄t = Nt/Xt is Francis and Ramey’s measure for hours,

where Xt reflects the exogenous and permanent workforce changes.52 In a neo-classical

production function we have Yt = F (Kt, AtXtN̄t) where At are conventional technology

shocks. But also the workforce changes, Xt, influence conventional per-capita output very

much like labor-augmenting technology shocks. Together with At, they make up for a

permanent component in Yt.

For the standard RBC model, King, Plosser, and Rebelo (1988b, 1988a, “KPR”) trace

out how the effects of permanent technology shocks induce a concurrent rise in real rate and

output (forecasting future high levels of output as well).53 Business cycle models typically

abstract from population growth so that their quantities are best understood as matching

per-capita aggregates. The question is now which per-capita units to use? A direct mapping

of the present setting to the KPR model presumes that the representative household has

preferences over Ct and N̄t, not Nt. In response to an increase in his workforce participation

52To be precise: Xt reflects a difference in population measures. It is the ratios of Francis and Ramey
(2005b, p. 10)’s “population available to carry out productive activity in the private sector” or “available
workforce” over the conventional measure of the civilian population over age 16.

53Partly, this results also from the choice of preferences and parameters of KPR. A permanent technology
shocks initially reduces capital stock (in technology adjusted units) and would thus reduce the incentive
to work because of a lower real wage. For standard preferences, this is however outweighed by positive
incentives arising from the high incentives to invest and thus raise future productive capacity and wealth.
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Xt, he benefits from the additional production without an increased disutility of labor.54

But also a model where the representative agent’s quantity decisions are measured in the

new per-capita units of Francis and Ramey would yield similar results. To a first order,

deflating all quantities by Xt corresponds to the transformations used by King, Plosser,

and Rebelo (1988a) to obtain a stationary economy in the presence of a stochastic trend.55

Its prediction for the correlation between real rate and (untransformed) output are the

same as above see King, Plosser, and Rebelo (1988a).

54In the spirit of Francis and Ramey (2005b), this could be palatable when Xt involves a change between
occupations with different productivity at least in terms of private sector output (e.g. time spent in school
or – no offense – government employment).

55This holds when the accuracy of the solution is limited to the first order, such that certainty equivalence
can be posited. The analysis then mirrors closely the case of a deterministic trend, see King, Plosser, and
Rebelo (1988a) for details.
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