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Abstract

We develop a general equilibrium model of vertical innovation in which multiple firms

compete monopolistically in the quality space. The model features many firms, each of which

holds the monopoly to produce a unique quality level of an otherwise homogenous good, and

consumers who are heterogeneous in their valuation of the good’s quality. If the marginal cost

of production is convex with respect to quality, multiple firms coexist, and their equilibrium

markups are determined by the degree of convexity and the density of quality-competition.

To endogenize the latter, we nest this industry setup in a Schumpeterian model of endogenous

growth. Each firm enters the industry as the technology leader and successively transits

through the product cycle as it is superseded by further innovations. The intrinsic reason that

innovation happens in our economy is not one of displacing the incumbent; rather, innovation

is a means to differentiate oneself from existing firms and target new consumers. Aggregate

growth arises if, on the one hand, increasingly wealthy consumers are willing to pay for higher

quality and, on the other hand, private firms’ innovation generates income growth by enlarging

the set of available technologies. Because the frequency of innovation determines the toughness

of product market competition, in our framework, the relation between growth and competition

is reversed compared to the standard Schumpeterian framework. Our setup does not feature

business stealing in the sense that already marginal innovations grant non-negligible profits.

Rather, innovators sell to a set of consumers that was served relatively poorly by pre-existing

firms. Nevertheless, "creative destruction" prevails as new entrants make the set of available

goods more differentiated, thereby exerting a pro-competitive effect on the entire industry.
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1 Introduction

Ever since Schumpeter (1942) laid down the mechanisms by which continued innovation of ever

higher quality products spurs "creative destruction", economists have viewed quality innovation

as a major engine of economic growth. Sparked by Aghion and Howitt (1992), Grossman and

Helpman (1991a and 1991b), and Segerstrom et al. (1990), an influential literature has formalized

these insights and uses the resulting models to analyze the relationship between market structure

and growth.

An equally influential literature deriving from Mussa and Rosen (1978) and Shaked and Sutton

(1982 and 1983) argues that product quality is also one of the major determinants of market

structure itself, i.e., it is a means by which firms differentiate their products from each other.

The Schumpeterian growth literature has, rather surprisingly, ignored this well-known differ-

entiation motive for quality innovation. Such a limitation is especially striking when one considers

that in most vertically differentiated industries, multiple heterogeneous firms compete.1 In these

industries, the growth of the average good quality is also a by-product of entrants’ desire to

differentiate their products from the competition by inventing higher quality goods.2

In this paper, we set up a framework that enables us to analyze how multiple firms compete in

the quality space. We then show how firms’ innovation decisions determine the density of quality

supply, equilibrium markups, and profits in a multi-firm environment of monopolistic competition

in quality.

In our model, growth arises through continued quality innovation by firms, just as in Schum-

peterian growth models. A key novelty is that firm entry also determines the degree of product

market competition (PMC). A high degree of PMC can only arise if entry to the industry is cheap

1For example, recent empirical studies in the field of international trade have documented that nearly all man-

ufacturing industries are characterized by many coexisting firms with heterogeneous prices and profits and that

this heterogeneity can, to a large extent, be explained by underlying heterogeneity in product quality. See, in

particular, Khandelwal (2010) and Kugler and Verhoogen (2010), but also Baldwin and Harrigan (2007), Johnson

(2007), Verhoogen (2008), and Hallak and Schott (2009). Moreover, many industry-level studies document the fre-

quent coexistence of a technological leader and multiple laggard firms. For example, Aizcorbe and Kortum (2005)

document how in the semiconductor industry, constant innovation of ever more powerful chips coincides with the

continued production of less advanced chips. Finally, Bils and Klenow (2001) provide direct evidence that in a cross

section of households, different levels of product quality are imperfect substitutes in the eyes of consumers: richer

households typically buy more expensive, higher-quality versions of the same goods that poor households also buy.
2Starting with von Hippel (1988), numerous empirical studies have shown that in the private sector, much

innovational activity is directed towards unserved consumer wants. Indeed, Saha (2007) find that such innovation

is empirically more important for firm growth than is process innovation directed toward lowering costs (see also

Sutton (1996 and 1998)).
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and, therefore, frequent innovation generates a dense quality spacing of firms in equilibrium.3 This

finding is the opposite of the existing literature, where the rate of innovation is strictly decreasing

in the degree of PMC, reflecting the lower profit flow of monopolists. We also show that “creative

destruction” may work via a pro-competitive effect rather than by displacing the incumbent.

Our analysis proceeds in three steps. In the first, we focus on monopolistic competition in

the quality space. More precisely, we develop a model that is suitable for analyzing the density

of competition and firm markups in vertically differentiated markets characterized by a large

number of active firms. Our model explains how multiple seemingly inferior, low-quality firms

can exist alongside the technological leader. The reason for their survival is that, although the

highest-quality good is preferred by all consumers, it also carries a higher price tag, which is not

worth paying for consumers with relatively low valuation for quality.

We document that market power of such low quality producers arises if the marginal cost

of production is convex with respect to quality. Consider, for example, three firms producing

1  2  3 under a marginal cost schedule that is convex in quality (the cost increment per

quality between production of 3 and 2 is larger than the cost increment between 1 and 2).

Next, consider the range of consumers whose willingness to pay for additional quality exceeds

the first increment but falls short of the second. These consumers receive a surplus by buying

2 at the marginal production cost instead of buying either 1 or 3 at any price exceeding the

respective marginal production costs. Because the producers of 1 and 3 never sell below their

marginal cost, the producer of good 2 enjoys positive market power. In this way, the convexity

of the marginal cost schedule generates market power for individual firms.4

In the second part of our analysis, we endogenize the firms’ location choice in the quality space

and analyze the resulting degree of competition under constantly growing income and valuation for

quality. Firms can incur a fixed cost to improve upon the existing qualities, and they are granted a

perpetual patent to produce the quality level of their choice. Each firm enters the industry as the

technology leader and successively transits through the product cycle as it becomes superseded by

further innovations. The benefit of entering with a higher quality good and the cost of doing so

both grow at constant rates, so that all entering firms face a scaled but symmetric entry condition.

3 In this sense, we go beyond Schumpeter’s notion that current market structure determines firm profits and

thus the incentives to innovate. In addition, we argue that the frequency and magnitude of innovations themselves

determine the “toughness” of competition, the market structure, and thus the incentives for further innovation.
4Shaked and Sutton (1982 and 1983) and successive work focus on the case where marginal cost is concave in

quality, hence implying that only one firm can survive at equilibrium.
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We prove that in this setup, the conditions required for the economy to be on a balanced growth

path imply that there is a dynamic equilibrium in which each new entrant chooses a quality that

is a constant percentage higher than the incumbent technology leader.5

Upon market entry, a firm chooses its quality level. In doing so, it aims to distinguish its

quality from those of the incumbents, as such isolation in quality increases market power and

profits. Higher qualities, however, come at higher fixed and marginal production costs. Whereas

the former effect drives firms to pick ‘remote’ qualities, the latter effect limits quality dispersion.

We also analyze how market size and the underlying technology parameters affect equilibrium

quality spacing, prices and quantities. We find that larger markets induce more frequent firm entry

and a higher density of quality supply because higher sales and profits allow a faster recovery of

setup costs. Markups, in turn, are decreasing in the density of supply and are thus decreasing in

the market size.

Surprisingly, a proportional increase in the marginal cost of production for all firms in the

industry by the same proportion is associated with a more densely supplied market. The rea-

son is that, in equilibrium, markups are proportional to costs. Thus, when production costs

rise for all firms, profits actually increase for any given quality spacing. Excess profits cannot

exist in equilibrium, and consequently, firms must exhibit denser quality spacing and "tougher"

competition.

The third part of the analysis nests the above-described economy in a dynamic model of

endogenous growth with vertical innovation, as described by Aghion and Howitt (1992). We show

that long-run economic growth can arise from entrants’ desire to differentiate their output in the

quality space if, on the one hand, increasingly wealthy consumers are willing to pay for higher

quality and, on the other hand, private firms’ innovation generates income growth by enlarging

the set of technologies available. In this way, the firms’ research efforts may generate exactly the

income growth that is needed to spur demand for quality.

This paper contributes to two broad literatures. First, it adds to the sizeable literature deriving

from Mussa and Rosen (1978) and Shaked and Sutton (1982 and 1983) that focuses on vertically

5 In our setup, with a clear ranking along the quality line, there is a unique top-quality producer whose first-order

condition differs from the first-order conditions of the rest of the firms facing two competitors each. The latter fact

substantially complicates our analysis, and therefore, we do not consider a simultaneous entry game as in Vogel

(2008). In models based on Hotelling (1929), one can avoid such border conditions because one can think of a circle

street or the beach surrounding an island. In our setup, however, any attempt to "close the circle" must fail, as it

would amount to identifying the highest quality good with the lowest quality good.
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differentiated markets in which natural oligopolies prevail, i.e., markets that are dominated by a

limited number of "market leaders".6

Our approach differs from this literature only in the underlying production technology. Exist-

ing studies assume that the marginal cost of production increases only moderately with quality,

which enables high-quality firms to out-price low-quality competitors.7Whenever this condition

is violated, heterogeneous consumers may differ in their individual ranking of variety-price pairs.

Shaked and Sutton (1983) do not analyze this case, which would, given their assumption of cost-

less market entry, imply entry of unaccountably many firms and competitive pricing along a dense

set of qualities. In the present paper, we analyze the case where the marginal cost of production

does increase sufficiently in quality, while explicitly modeling the firms’ quality choice under the

standard assumption of costly market entry.

Second, our model is also relevant to the static and the dynamic aspects of the literature

analyzing the product market competition (PMC) and growth nexus. The principal difference

between the classical Schumpeterian growth models described by Aghion and Howitt (1992) and

our approach is that, whereas existing work focuses on the supply side of technical change (i.e.,

innovation as a means to reduce costs and undercut the competition), we investigate the impor-

tance of consumer preferences and the latent demand for new products as a driver of aggregate

growth.

In our approach, firm innovation creates growth because innovational efforts are directed

toward consumer preferences for higher quality goods. This motive for innovation is akin to

the one in the literature on the direction of technical change. For example, Acemoglu (1998,

2002, and 2007) argue that a growing supply of skilled labor generates incentives to invest in

technology directed toward that factor of production, and Acemoglu (forthcoming) analyzes the

general conditions under which the scarcity of a factor encourages technological progress directed

towards it.8 Similarly, we focus on how the direction of technological advance tracks the evolution

of consumer preferences: as consumer valuations grow over time, the market for higher-quality

6See also Shaked and Sutton (1984) and Sutton (2007) and (2007a) for the case of one-firm environments, and

see Champsaur and Rochet (1989) for the duopolistic case.
7See Lahmandi-Ayed (2000 and 2004) for an extensive discussion of the conditions of technology that induce

natural oligopolies.
8There exists ample empirical evidence for the importance of these considerations for the direction of innovation.

Acemoglu and Finkelstein (2008) document that in the case of the health sector, changes in the relative cost of

labor had pronounced effects on the adoption of new labor saving technologies. Newell et al. (1999) and Popp

(2002) document that energy prices have strong effects on the innovation of energy-saving technologies.
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goods expands, creating technological advances directed towards higher-quality goods.

This principal difference in the motivation of firms to conduct costly R&D is associated with

two key novel implications of our results compared to the existing literature. First, in our setup,

the degree of product market competition (PMC) and the frequency of innovation are jointly

determined. Whereas the existing literature introduces PMC via exogenous parameters, in our

setup, the degree of PMC is determined endogenously, arising from the entrant’s decision to

differentiate its product from existing goods.

In the classical Schumpeterian growth models, the rate of innovation is strictly decreasing in

PMC, reflecting the lower profit flow of monopolists. In our approach, this finding is reversed: a

high degree of PMC can only arise if entry to the industry is cheap and if, therefore, innovation

happens frequently. In this sense, the incentives to innovate in our model are related to the

"escape competition" motive for R&D in Aghion et al. (2001) (see also Aghion et al. (1997)

and Aghion et al. (2005) and in the informal discussion in Boldrin and Levine (2004)), where

incumbent firms innovate to increase their cost advantage over lagging imitators.

There exists a fundamental difference, however, between frameworks such as that of Aghion

et al. (2001) and our approach. Whereas these existing frameworks focus on cost-innovation in a

setup where government policy can directly affect the degree of substitutability between products

(for example, the elasticity of substitution between different goods is a direct policy choice in

Aghion et al. (2001)), we take the view that the degree of good substitutability is the result of

firms’ location choice in the quality space. Our main focus, then, is to analyze how post-innovation

substitutability itself is shaped by the degree to which innovators distinguish their products from

existing ones given a set of entry barriers and input costs.

The second novel implication concerns the nature of "creative destruction" and the mechanisms

through which innovating firms create aggregate innovation (see Klette and Kortum (2004)). In

existing Schumpeterian growth models, innovation occurs because it allows entrants to displace

the incumbent firm. Our setup does not necessarily feature such a "business stealing" effect in

the sense that already marginal innovations grant non-negligible profits. Instead, innovators sell

only to a set of consumers that was served relatively poorly by pre-existing firms.

Creative destruction does, however, prevail due to the pro-competitive effect of entry. New

entrants make the set of available goods more differentiated, which is shown to reduce the market
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power of all firms so that in equilibrium, firm entry exerts a pro-competitive effect on the entire

industry. Margins are thus strictly decreasing in entry.

Our model also features a product life cycle, where each firm enters the industry as the

technology leader and successively becomes superseded by further innovations. As it transits

through this life cycle, each firm’s margins are depressed with every new entry. The latter entry

effect, however, also becomes smaller and smaller as the firm becomes sufficiently "backwards"

and is no longer much affected by high-quality entry. The firm’s markups asymptotically approach

a positive value that is determined only by the quality spacing.9

The remainder of this paper is structured as follows. In Section, 2, we present some empirical

evidence on the relation between patenting and markups. In Section 3, we develop a theoretical

model of competition in the quality space. We examine the static predictions of this model in

subsection 3.2. We next analyze free entry decisions and the stationary equilibria in 4. Finally,

we endogenize the growth rate in Section 5 before describing our conclusions in Section 6.

2 A Brief Look at Innovation and Product Market Competition

in Europe

In developing our theory, we are motivated by the fact that in most vertically differentiated

industries, a wide set of firms coexist, providing goods of heterogeneous quality. Furthermore,

we are able to match the product life cycle that results from firms’ continued innovation of

higher product qualities. More importantly, however, our model has implications for one of

the fundamental questions of the Schumpeterian growth literature: the link between PMC and

economic growth.

In this respect, the most salient feature of our theory is that the degree of PMC emerges

endogenously via the frequency of entry and, ultimately, through the costs of market entry. This

direction of causality implies that a higher frequency of firm entry generates higher PMC, as firms

squeeze together more densely in the quality space. In contrast, models in the spirit of Aghion and

Howitt (1992) generally explore causality in the reverse direction, predicting that (exogenously

9The model also features the substitution and complementarity effects of innovation and the product life cycle

first analyzed in Young (1993). In our model, as new innovation occurs, the economy grows, and consumer valuations

increase. This growth has two consequences: first, because it raises the average willingness to pay for quality, prices

increase. Second, as the support of the valuation distribution grows, its density thins out, and any firm serving a

fixed range of consumer valuations thus serves fewer customers.
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given) higher profit margins attract more firms, which enter markets at a higher frequency.10

Clearly, the correlation between PMC and the frequency of firm entry could empirically dis-

cern these two motivations for product innovation. Therefore, we take a brief look at these two

variables.

Does PMC relate positively or negatively to the frequency of firm entry? To shed light on this

question, we use the demand elasticity estimated by Broda et al. (2006) to measure the degree of

equilibrium PMC, exploiting the variation along the country and the industry dimension. On the

other side, we use patenting activity as a gauge of the frequency of industry-specific firm entry

or, reading our theory a bit more generally, as a measure of product innovation.

For our empirical exercise, we use the patenting data from Johnson (2002), who reports the

number of patents issued in 66 manufacturing and commodity sectors for six European countries

(Denmark, France, Germany, Italy, Netherlands, and United Kingdom). International patent

data is usually categorized according to the International Patenting Classification (IPC) scheme,

which the Yale/OECD technology concordance maps into international standards industry codes

(ISICs). This concordance table is constructed by Johnson and Evanson (1997) following the

methodology of Kortum and Putnam (1994), and it maps IPC codes into the ISIC sectors that

actually use the patents ("sectors of end use"). Thus, the resulting dataset of patents at the ISIC

level correlates well with the actual adoption of new technologies in these ISIC sectors.

The 66 ISIC sectors from Johnson (2002) are classified at various levels of disaggregation.

They include four observations at the "section" level, 31 2-digit industries, 17 3-digit industries,

and 14 4-digit industries, hence resulting in fewer than 66 independent observations. Taking this

limitation into account, we can concord 38 of the sectors reported by Johnson with the demand

elasticities from Broda et al. (2006) that are reported at the 3-digit level of disaggregation in

the Harmonized System (HS). Johnson (2002) report patenting data for 1998, which happens to

be near the midpoint of the time interval of the trade data (1993 to 2004) used by Broda et al.

(2006) to construct their trade demand elasticity estimates.

Having matched demand elasticities and innovation rates for 38 different sectors, it is essential

that we apply a consistent rule to classify the industries into two groups, the first of "vertically

differentiated" goods and the remainder, which we simply refer to as "horizontally differentiated".

The most convincing criterion for vertical differentiation is developed by Bils and Klenow (2001),

10Aghion et al. (2001) predict an inverted U-shape relation between the two variables.
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who directly estimate the steepness of the Engel curve utilizing the cross section of household

incomes and the associated spending for discrete choice durable goods such as cars or television sets

in the Bureau of Labor Statistics’ "Consumer Expenditure Survey". We match the Harmonized

System codes to the Bils and Klenow (2001) set of durable goods.11

The disadvantage of following this methodology is that the resulting concordance of Bils and

Klenow (2001) goods to HS 3-digit sectors is rather rough because Bils and Klenow (2001) focus on

consumption goods such as telephones, TVs, rugs, and multiple apparel goods (e.g., men’s suits,

women’s dresses). In many cases, multiple Bils and Klenow goods fall into the same industry,

so that we can identify only 8 of the 38 industries use "vertically differentiated" goods: steel,

manufacturing of motor vehicles, precious metals, office machinery, television and radio receivers,

wearing apparel, and wood products (see Table A1 in the Appendix for a list of all 38 sectors and

their classification).

Figure 1 demonstrates that in these vertically differentiated industries, more patenting is

associated with a higher degree of PMC. This figure relates the logarithm of the elasticity of

substitution in 48 industry-country pairs (eight industries and six countries) to the logarithm of

the number of patents issued in 1998 in the respective country-industry pair.12

11The 66 durable goods discussed in Bils and Klenow (2001) are not classified by a standard classification scheme.

To match this data, we used a text search matching the verbal description of their data with the universe of the

6-digit 1992 HS good classes. In most cases, we coule uniquely match them to one 6-digit class, except for the case

of "Hard Flooring", for which we instead searched for "parquet".
12There are a few sector-country observations with 0 patents. We therefore define the logarithm of patents as

Logarithm of No. Patents= N_Patents=Ln(No. Patents+e^(-1))+1, which equals 0 for sectors with 0 patents and

is positive otherwise.
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Figure 1

The scatter plot displays a clear positive correlation between these two variables. Because

markups are a negative function of the elasticity of substitution, this correlation implies that

industries characterized by more product innovation have lower markups, as opposed to the pre-

diction of the standard Schumpeterian model. There is one clear outlier (cars and car parts made

in Italy, with an elasticity of 669), but the inclusion or exclusion of this observation does not alter

the qualitative picture.

Table 1 examines whether the correlation depicted in Figure 1 is statistically significant and

whether it is driven by country-specific factors. In all estimations, the dependent variable is the

logarithm of the Broda et al. (2006) demand elasticity. In Column (1), only the logarithm of the

number of patents granted in 1998 is added as dependent variable, and the sample includes the

47 (six times eight country-industry pairs minus one outlier) vertically differentiated industries.

The positive raw correlation between these two variables is indeed statistically significant, and

the estimated elasticity of the degree of PMC (i.e., the percentage change of the elasticity of substi-

tution) with regard to the frequency of patenting is 0135. A brief back-of-the-envelope calculation

shows that this value is economically quite significant. The median elasticity in this sample of

vertically differentiated industries is 373, whereas the standard deviation of the logarithm of the

10



patenting frequency is 187. Therefore, for the median industry, if the patenting frequency were

to increase by one standard deviation, the average industry elasticity would increase from from

373 to 373 ∗ 0135∗187 = 48. This, in turn, implies that the average markup would decrease

from 373(373− 1)− 1 = 37% to 48(48− 1)− 1 = 26%. A one-standard deviation increase in
patenting would thus reduce markups from 37% to 26%, or by nearly a third.

It could be the case that patenting is generally higher in larger economies and that markups

are generally lower in these larger economies because those markets are more crowded. We want to

be sure that the positive correlation between the degree of PMC and the frequency of entry is not

driven by this aggregate pattern but rather has industry-specific origins. Therefore, the estimation

reported in Column (2) includes country fixed effects that control for the across-country variation.

This approach does not alter the results, and the coefficient is still estimated significantly positive.

Also, within the countries, the frequency of patenting determines the degree of PMC across the

industries. Column (3) repeats the specification of Column (2), but adding the outlier, which

leads to a much larger estimated elasticity.

Repeating the regression for the rest of the sample with the "horizontally differentiated"

goods, produces no significant correlation between patenting and PMC. Column (4) reports the

estimates for the specification with country fixed effects for the 35 sectors (210 country-industry

observations) that we cannot match with the vertically differentiated goods of Bils and Klenow

(2001). The coefficient is an order of magnitude smaller in size than for the vertically differentiated

industries, and it is not significant. It is noteworthy that industries classified as "horizontally

differentiated" are, in terms of elasticities, about as differentiated as the "vertically differentiated"

ones. With the inclusion of the outlier, the average logarithm of the demand elasticity in the

former sample of vertical differentiated industries is 1524, while it is 1449 in the latter. This

result not only justifies our labeling of "horizontally differentiated" goods but also ensures that

our estimation results are not driven by varying degrees of vertical differentiation across the good

classes or, similarly, by a different mix of both classes under aggregation of the industries.
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Table 1 - Patenting and Product Market Competition in Vertically Differentiated Industries 

(1) (2) (3) (4) (5) 

Sample: Bills and Klenow Bills and Klenow Bills and Klenow not Vertically Personal Transp.
Vertically Dif. Vertically Dif. Vertically Dif. Dif. in Bills (Cars, Trains, 

Excl. Cars-Italy Excl. Cars-Italy all sectors and Klenow Ships, Aircraft) 

Dependent Variable: Ln of the Sector- and Country-Specific Demand Elasticity from Broda et al. (2006)

Ln of Patenting Per Sector  0.1345 0.1689 0.2632 0.0401 0.2977 
and Country [0.0399]*** [0.0656]** [0.1081]** [0.0291] [0.1515]* 

Country Dummies y y y 
            
Observations 47 47 48 210 24 
R-squared 0.16 0.19 0.26 0.1 0.12 
Robust standard errors in brackets * significant at 10%; ** significant at 5%; *** significant at 1% 
 

Table 1

While we think that using the Bils and Klenow (2001) classification of vertically differentiated

and other sectors is the most objectively consistent role we can follow, it is noteworthy that other

reasonable definitions of vertically differentiated goods lead to the same pattern. For example,

Figure 2 presents a scatter plot relating the logarithms of patenting and the elasticity of sub-

stitution for the four personal transportation equipment industries in our dataset: cars, ships,

railway, and aircraft. These industries are also arguably discrete-choice, vertically differentiated

industries. Also, within this sample, the relationship between PMC and patenting is negative

rather than positive. Due to the small sample size, however, (we have now four industries in six

countries minus one outlier) the relationship is only significant at the 10% level (see Column 5 of

Table 1).
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These patterns in the data lead us to conclude that there is a robust positive correlation

between product innovation and PMC in vertically differentiated industries. We therefore believe

that the causal link running from innovation activity to larger product differentiation to PMC is

particularly strong in the case of vertically differentiated industries, which justifies an effort to

develop a model of Schumpeterian growth with firm entry, generating PMC endogenously. In the

following theory section, we set out to propose such a model.

3 Spatial Competition in Quality

In the following, we aim to analyze Schumpterian growth in a setup where more than one firm

survives. To make this analysis possible, we must first develop a setup, where seemingly inferior,

low-quality firms survive along with the technological leader. This task is not trivial, as Hotelling’s

classic ‘location’ paradigm, widely used to reflect generic product characteristics, does not apply

to competition in quality. By its very definition, quality requires that individuals agree on the

ranking of varieties so that, in particular, their individually preferred "ideal variety" coincide.
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When it comes to vertical differentiation — or differentiation in quality — only the higher price

tag of the universally preferred higher-quality goods causes different consumers to buy distinct

qualities.

Our approach is based on Shaked and Sutton (1982, 1983), who pioneered research on vertically

differentiated markets in which natural oligopolies prevail, i.e. markets that are dominated by

a limited number of "market leaders". The authors call this feature, characterizing vertically

differentiated markets, the finiteness property. Its key element is that the marginal production

costs increase only moderately with quality, which enables high-quality firms to out-price low-

quality competitors.13 Whenever this condition is violated, heterogeneous consumers may differ

in their individual ranking of variety-price pairs, and Shaked and Sutton (1983) observe that the

competition in quality is "reminiscent of the ‘location’ paradigm" by Hotelling. The authors do

not analyze this case, which would, given their assumption of costless market entry, imply entry

of unaccountably many firms and competitive pricing along a dense set of qualities.

In the present section, we analyze the case where the marginal cost of production does increase

sufficiently in quality, thus violating the finiteness property, while explicitly modeling the firms’

quality choice under the standard assumption of costly market entry. We adopt a setup in the

spirit of Shaked and Sutton, where consumers prefer quality at a linear rate.14 We depart from

their setup, however, by assuming that the price of a good increases steeply with the good’s

quality, so that lower-valuation consumers in equilibrium prefer to buy goods other than the one

of the current technological leader.

Figure 3 depicts the resulting equilibrium market structure of our approach: higher-valuation

consumers tend to buy from high-quality producers. Each firm has two direct competitors (one

for the maximum-quality producer) and sells to a range of consumers who, on the one hand, do

value quality enough to buy from the firm in question rather than the direct lower competitor

but, on the other hand, do not value quality enough to buy from the higher-quality competitor.

13See also Shaked and Sutton 1984, Lahmandi-Ayed 2000 and 2004, and Sutton 2007, 2007a.
14See also Mussa and Rosen (1978) and Auer and Chaney (2008 and 2009)
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Figure 3: Segmentation of the consumer/valuation space by quality levels.

In the next steps, we formalize this framework and analyze the static determinants of prices

and profits for a given quality spacing.

3.1 General Setup

There are one homogeneous good  and a continuum of differentiated goods of total mass one 

( ∈ [0 1]). Each of the differentiated goods comes in a set of different quality levels {}∈ .

3.1.1 Preferences

From each of the differentiated goods  , consumers consume either one unit or none at all. When

consuming the amount  of good  and the vector of qualities q = {}∈[01] of the -goods, an

individual derives utility

 (q ) =  ·
∙Z 1

0

 

¸
+  (1)

The higher the parameter , the higher is the individual’s desire to consume quality. We will,

therefore, in the following call  the valuation of quality or simply valuation.

Our formulation of preferences slightly modifies the approach from Mussa and Rosen (1978)

to a multitude of differentiated goods; it is also close to the standard formulation of Shaked

and Sutton (1982), who assume a multiplicative structure between the homogeneous and the

differentiated good.

We normalize the price of the homogeneous good  to unity and write () for the price

of quality . The mass of individuals totals . These individuals value the differentiated good
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differently, i.e., with different parameters . We define the resulting cumulative density function

of valuations as

 () : [min max]→ [0 1] (2)

where 0 ≤ min  max ∞.

3.1.2 Production

The -type good is produced competitively with constant returns to scale and labor as the only

factor. Production technologies of the-type goods exhibit increasing returns to scale and depend

on the quality level produced. In the following, we consider a representative -industry and drop

the index . Firms that enter the -market to produce the quality  ∈ (0∞) must acquire a
blueprint at the fixed cost of

 ( ̄) =  (̄) ̄ (3)

effective labor units, where ̄ is the maximum quality of the incumbent firms. The function ()

is differentiable and increasing, while  (̄) ̄ is (weakly) decreasing in ̄. We thus assume that

blueprints of higher qualities are always more expensive, but invention of a given quality is less

expensive the more advanced the existing quality frontier.

A firm, having acquired a blueprint for quality , can produce at the constant marginal cost

of

() =  (4)

labor units. The parameters   0 govern the production cost. We assume that both, the fixed

cost of entry, as well as, the marginal cost are increasing and convex in quality (  1).

We characterize the equilibrium in which firms enter production at the optimal quality level

and subsequently engage in monopolistic pricing. The equilibrium is solved through backward

induction, i.e., we first determine the prices at given quality levels and subsequently analyze entry

decisions.

3.2 Optimal Pricing

We begin by characterizing the general pricing solution for an arbitrary distribution of a countable

set of qualities. For notational simplicity, we set  =  () and  =  (), where  is the quality

level produced by firm . We index firms by  ∈ N0 = {0−1−2 } and order firms by their

16



quality level so that firm 0 produces the highest quality level 0, and all further quality levels

satisfy −1  .
15

Firms compete in prices, i.e., each firm sets the price of its quality to maximize its operating

profits, while taking total demand and the other firms’ prices as given. Under preferences (1), a

consumer with valuation  is indifferent between two goods  and +1 if and only if their prices

 and +1 are such that +1 − +1 =  − . Thus, given () from (2) and given the

prices {}≤0, the  firm sells to all consumers with valuations  in the interval [−1 ],

where16

 =

⎧⎪⎨⎪⎩
max if  = 0
 − −1
 − −1

if   0

min if  = min − 1
(5)

The firms’ market shares are thus [ +1], and the market is partitioned as shown in Figure 3.

Because each consumer with valuation  ∈ [ +1] demands one unit of the variety produced
by firm , firm  serves the mass of (+1) − () consumers and solves the maximization

problem

max


( − ) [ (+1)− ()]  (5) (6)

The optimality condition of this problem is

 (+1)− ()− ( − )

∙
0 (+1)
+1 − 

+
0 ()

 − −1

¸
= 0 (7)

where the expressions (5) apply. At min , max, the constant limits of the distribution, the

derivatives in (7) are set to zero (0(min) = 0(max) = 0). Firm ’s profits are zero at  = 

and at

̄ =
( − −1) +1 + (+1 − ) −1

+1 − −1

because the latter price implies +1 =  and thus zero market share for the 
 firm. Finally,

as17

̄ =
( − −1) +1 + (+1 − ) −1

+1 − −1
≥ ( − −1) +1 + (+1 − ) −1

+1 − −1
 

15Notice that we implicitly assume the set of firms is countable. By making this assumption, we already anticipate

that in the equilibrium of the later entry game, firms need to recoup their setup cost with monopoly rents. Under

Bertrand competition and positive setup cost, this assumption implies that firms must be located at positive distance

to each other, and the number of firms is necessarily countable.
16We rule out undercutting, where firm  sets its quality-adjusted price to take the market share of a directly

neighboring firm and compete with second-next firms.
17The last inequality holds by convexity of ().

17



and profits are positive for  ∈ [ ̄], there is an interior solution to the profit maximization
problem, which necessarily satisfies (7). Generic profits are

 = ( − )
2

∙
0 (+1)
+1 − 

+
0 ()

 − −1

¸
 (8)

With this characterization of prices and operating profits, some regularities of equilibrium prices

and profits emerge.

Lemma 1 Let {}≤0, {}≤0 and (7) define a system with the prices {}≤0 and operating
profits {}≤0. For any   0, the following statements hold:

(i) The transformed system defined by 0 = , 
0
 = , 

0 = −1 and corresponding (7)

has the solution {0}≤0 and {0}≤0 satisfying

0 =  and 0 =  ∀

(ii) The transformed system defined by 00 = , 
00
 = , 

00 =  and corresponding (7) has the

solution {00}≤0 and {00}≤0 satisfying

00 =  and 00 =  ∀

Proof. See Appendix

The first part of the Lemma states that, if quality levels, marginal production costs and

valuations increase at the right proportions (according to (3) and (4)), then equilibrium prices

and profits are a constant proportion of the marginal production costs. Part (ii) of the Lemma

states that if marginal production costs and valuations increase proportionally while quality levels

are constant, then prices and profits are a constant proportion of the marginal production costs.

These regularities will lead us to a particularly nice pattern of the firms’ quality choice —

namely proportional spacing. We turn to this feature next.

4 Endogenous Spacing Under Free Entry

This section shows that in a dynamic version of the general setup described above, free entry

supports equilibria with equal relative spacing of firms, endogenously generating quality levels

that satisfy

−1 =  ∀  (9)
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We introduce a dynamic dimension to our model by assuming that time is continuous and that

valuations grow at the constant rate . The rate  is for now given exogenously and is endogenized

in Section 5 below. Indexing each valuation parameter with time subscripts, we can write  =

. Consequently, the distribution  is time dependent and satisfies

() = (
−) (10)

where  is the distribution at the initial date  = 0.

Our analysis aims at a stationary equilibrium in which each firm enters the industry as the

technological leader and successively transits through the product cycle as it becomes superseded

by further innovators. The gain of such a dynamic entry game is that we only need to analyze

the entry problem of one firm at a time. In particular, we avoid the problems that arise in a

simultaneous entry game, such as in Vogel (2008).18

In a dynamic game of this type, the profits of a firm producing  evolve as depicted by the

bold line segments in Figure 4. Each continuous section represents the profits when no innovation

occurs. Innovations occur at regular intervals (depicted by ∗1, 
∗
2). At these moments, the firm’s

profit drops by a discrete amount, because the new competitor reduces the incumbents’ sales and

markups.

The dashed line illustrates the general trend. Two opposing forces are at work that explain

why this trend may be first increasing and then decreasing over time. First, for a given set of

firms, the profit flow for top-quality firms is increasing as consumer valuations increase over time,

driving up market shares and markups. Second, the growing range of consumer valuations also

implies that the density of consumer valuations constantly thins out. In particular, firms converge

at the limit to serving a fixed interval of valuations, while the density of valuation over this range

constantly thins out. Therefore, the profit flow drops to zero at the limit.

18 In fact, the resulting complications would be tremendous in our setup, because the clear ranking of the quality

line prevents us from using the symmetry properties that arise in models based on Hotelling (1929), where one can

consider economies formed like a circle street or the beach surrounding an island. In a quality setup, however, any

attempt to "close the circle" must fail, as it would amount to identifying the highest quality good with the lowest

quality good.
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Figure 4: Profit Flow over the Life Cycle of the Firm Entering at ∗0

In the entry equilibrium depicted in Figure 4, entry is such that any innovating firm imme-

diately starts producing once it enters the market. If entry is sufficiently cheap, the zero profit

condition may also force firms to enter the industry pre-emptively: at the moment of entry ∗0,

the good produced by the technological leader is of such a high quality that there would be no

demand for the firm’s product even if it were sold at marginal costs.

The resulting product life cycle with pre-emptive entry is depicted in Figure 5. In this equilib-

rium, valuations only catch up after some time and the associated income and valuation growth.

In Figure 5, we depict an economy where in equilibrium, consumers’ willingness to pay for quality

−− is such that new firms only sell after two further entries. In such an equilibrium, at the
moment when the maximum valuation () is just high enough so that this consumer buys

from the firm that entered at ∗0, firm 0 sells at marginal costs (because it sells to a set of 0 con-

sumers so that demand is infinitely elastic). Thereafter, the profit flow of firm 0 increases steeply

with time: not only does the set of consumers it serves grow rapidly as valuations catch up, but

also, as it sells to a growing range of consumers, its demand becomes less elastic and, thus, its

markup increases steadily. In the limit, the firm approaches a constant markup. Because the firm

converges at the limit to serving a fixed interval of valuations, while the density of valuation over

this range constantly thins out, later in the product life cycle the profit flow drops and asymptotes

to 0.
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Figure 5: Profit Flow of the Firm Entering at ∗0 under Pre-Emptive Entry

In the entry game, firms decide not only which quality to aim for but also when to enter the

industry. We assume that at each point in time, there is a mass of potential entrants who could

pay a fixed cost  () to receive a perpetual monopoly to produce the good of quality level .

With this setup, the potential entrants start innovating as soon as innovation generates a profit

flow with a net present value as least as big as the innovation cost.

Initially, the set of active firms is {0−1−2 }. Firms are ordered according to ascending
qualities, so that a higher firm index corresponds to a higher quality. These initially active firms

produce qualities {}≤0, which satisfy (9). As demand grows for goods at the top end of the
quality spectrum, new firms gradually establish at the upper end of the quality spectrum.

We assume that a plant established at quality level  automatically holds the blueprints for

all qualities between −1 and , where −1 is the next lower quality level. This assumption

restricts entry of additional firms to quality levels above the pre-existing ones (+1 ≥ ).

Now, for  ≥ 1, let  denote the entry date of the  additional firm (implying 0 ≤ 1 ≤
2 ≤ ), and further let  stand for its quality level (0 ≤ 1 ≤ 2 ≤ ). It will prove convenient

to express the quality choice of the  entrant relative to the highest quality of all incumbents

(−1) as

 = −1  ≥ 1

At time  ∈ [+ ++1) the set of quality levels supplied to the market is {}≤+. Current
prices are determined implicitly by (7) and depend on all currently produced quality levels as well
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as on all current valuations  = . Consequently, at time  ∈ [+ ++1), the operating
profits (8) of the  additional firm are a function of qualities {}≤+ and time  . We

can express this time dependence as dependence on the factor  , which multiplies all valuation

parameters . Formally, operating profits of the firm  at time  are thus


¡
  + + +−1 +−2  1 

¢
 ∈ [+ ++1)

Defining now the product

Γ =
Y

=1
+ (11)

we have + = Γ so that at time , the present value of the flow of operating profits for

a potential entrant is

Π( ) =
X
≥0

Z ++1

+

−(−)
¡
 ΓΓ0−10 + +−1  1 

¢
 (12)

The parameter  is the constant rate at which firms discount future profits.

We are now ready to formulate the entry decision of firms. The  firm chooses its entry

date () and its location on the quality line (). With the second choice, it maximizes the

present value of profits at time  (12) net of costs (3). Given the spacing −1 −2  1 ,

and conditional on the entry date , the 
 optimal quality choice is

̂
¡
−1  1 

¢
= argmax

̃≥1

(X
≥0

Z ++1

+

−(−)
³
  Γ̃̃Γ0−10 ̂+ ̂+−1

  ̂+1 ̃ −1  1 
¶
 −  (̃Γ0−10)

¾
(13)

Here, Γ̃ stands, similar to (11), for the product of the  future optimal relative spacing para-

meters, given that the -entrant plays ̃:

Γ̃ =
Y

=1
̂+

¡
̂+−1 ̂+−2 ̃ −1  1 

¢


Note that all future location choices ̂+ (and Γ̃) as well as future entry dates + are

functions of the  firm’s choice. For expositional purposes, however, the arguments ̂+(̃),

Γ̃(̃), +(̃) are suppressed in (13) and further down. The
 firm’s entry date is determined

by the free entry condition, i.e., the requirement Π( ) ≥  ( −1). Formally, we write

 = inf

(
 ≥ −1

¯̄̄̄
¯ sup̃≥1

"X
≥0

Z ++1

+

−(−)
³
  Γ̃̃Γ

∗
0−10 ̂+ ̂+−1 

 ̂+1 ̃ 
∗
−1 

∗
−2 

∗
1 

¶
 −  (̃Γ∗0−10)

¸
≥ 0

¾
(14)
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where ∗ denotes the equilibrium locations

∗1 = ̂1 () and ∗ = ̂(
∗
−1 

∗
−2  

∗
1 ) (15)

and Γ∗0 is defined in parallel to the above definitions as the product of the equilibrium ∗

Γ∗0 =
Y

=1
∗ 

Optimal quality choices (13) and the free entry conditions (14) of all entrants ( ≥ 1) determine
the equilibrium of the entry game. The first important result of this section concerns the solution

of the system (13) - (14) and is formulated in the following Proposition.

Proposition 1 For any combination of positive parameters (     ), there exists a ̄  1

so that the equilibrium of the entry game (13) - (14) sustains

 = ̄−1  ∈ Z

In this equilibrium, the time intervals between consecutive entries are constant and equal to

∆ = ( − 1) −1 ln(̄) (16)

Proof. See Appendix.

For the parameters (     ), we label the corresponding equilibrium the Equal Relative

Spacing Equilibrium (ERSE). Notice that the proposition establishes existence of the ERSE but

is silent about its uniqueness. We therefore restrict all further considerations to the one ERSE

(out of possibly many) with the minimal spacing ̄. Now, (as argued in the proof of Proposition

1), under a preexisting spacing parameter equal to one ( = 1), the optimal spacing of the first

entrant ∗() from (15) satisfies ∗()   for all  ∈ (1 ̄). Consequently, we conclude that at
the minimal symmetric ̄, characterized by ∗(̄) = ̄

∗()


¯̄̄̄
=̄

 1 (17)

holds. For this ERSE with the smallest , we can show the following Lemma.

Lemma 2 Let ̄ be the spacing parameter of the ERSE. Then,

(i) ̄ depends on () only and can be written as ̄(()).

(ii) ̄ is constant under the transformation (  )→  · (  ), where   0.
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Proof. (i) Operating profits  are linear in ; setup costs  are linear in . Thus, when

replacing 0 = , population  factors out of the slanted brackets in (13) and the square brackets

in (14). Consequently, the solution to problem (13) - (15) and thus ̄ depends on 0 = 

only. Similarly, operating profits are, by Lemma 2 (ii), linear in  under the transformation

0() = () (or 0 = − ln(1)). Hence, replacing 0 =  in (13) and (14), ̄ depends on 0

only.

(ii) Net present profits (12) are constant under the time transformation  → , given that

locations are constant and firm entry dates transform by  → . Under this condition, the

firm entry remains unchanged. By (13), firm entries are transformed accordingly. Finally, the

time transformation is equivalent to (  )→  · (  ).

Technically, the Lemma shows that we can choose the notation ̄() to reflect the functional

dependence of ̄ on all three parameters ,  and . Economically, it says that the density of

quality supply (and of competition) is equally affected by a doubling of the market size or the

marginal costs or by a reduction of setup cost by half.

It would be premature, however, to infer welfare consequences based on the parameter ̄ (and

its impact on markups) alone, conjecturing, e.g., that an equal increase of the setup costs  and

the operating costs  leaves the economy unchanged. In fact it does not. Such a change in

technology actually postpones innovation (reflected in the time transformation in the Lemma’s

proof) so that more time elapses until a given quality is on the market. This delay means that

individuals purchase lower qualities because each quality is more expensive, and fewer high-quality

goods are available on the market. Both effects have a negative impact on consumer surplus. It

is straight forward, however, to show that an increase in setup cost that is entirely offset by an

increase in the size of the workforce , preserving not only the relative spacing ̄ but also the

timing of innovations, and thus leaving the quality spectrum at each point in time unchanged.19

This section has derived a novel result about the regularity of spacing (Proposition 1) and

the relative impact of the model’s key parameters (Lemma 2). These findings hold in a relatively

general setup, which includes, in particular, a non-degenerate distribution of valuations (2). This

generality, however, comes at a price. In particular, we were unable to show uniqueness of

19 It is interesting to note that our model exhibits a monopoly distortion that is new to the endogenous growth

literature: positive markups lead consumers to choose a quality that differs from the socially optimal one. In

equilibrium, each consumer compares the increase in the goods’ quality to the increase in the good’s price. Because

markups are generally increasing along the quality dimension, the increase in price from one good to the other is

higher than the cost increase. Consumers, therefore, tend to choose too low a quality.
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equilibria — neither of the entry game nor, in fact, of the pricing game (determined by (7)).

We solved the first of these uniqueness problems by restricting our analysis to the equilibrium

with the highest density of quality and simply ignored the second.20 In the important case of a

uniform distribution of valuations, also the second of the ambiguities luckily vanishes. We next

turn to this case.

4.1 Uniform Distribution

We analyze the special case when valuations are distributed uniformly as

() = ([0 max]) (18)

In this case, which also appears in Auer and Chaney (2007), the optimality conditions (7) give

rise to the system

 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
[0 + (0 − −1) max + −1] if  = 0

1

2

∙
 +

 − −1
+1 − −1

+1 +
+1 − 

+1 − −1
−1

¸
if   0

(19)

which implies that equilibrium prices are determined as follows.

Proposition 2 Assume equal relative spacing in quality, i.e., (9) holds. Then prices are

 =
³

³


´
+ 

´
 ∀  ≤ 0 (20)

where

 =
 + 1

2( + 1)−  − 1−
(21)

 =  + 1 +
p
2 +  + 1 (22)

 =


2− 1
µ
1− 

³
2− −

´
+

 − 1


0max

0

¶
 (23)

Proof. See Appendix

Proposition 2 not only provides a closed-form solution but, in addition, establishes uniqueness

of the pricing equilibrium. Notice finally that, while the term  from (20) may be negative,

markups are always positive.21

20 In fact, it is easy to remedy this problem by either assuming that economic agents correctly anticipate one

stable pricing equilibrium or by introducing expectations, of profits in particular, when realizations of equilibria are

identically and independently distributed over time.
21 Inequalities 2( + 1)   + 1− and   1 hold (are violated) for  → 1 ( →∞) and  =  if and only

if  solves  + 1− = 2(+1). Thus,  is negative iff   1. Now, distinguish two cases. First, if   0 holds,
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Proposition 2 also allows us to make an intuitive and simple statement regarding the effect of

entry on the markups of existing firms.

Lemma 3 For a given set of firms that satisfies (9), entry of an additional firm at the top end

of quality at 1 = 0 weakly decreases the markup of any preexisting firm.

Proof. Denote the parameter from (23) before (after) entry of the additional firm with 

(̃) and notice that by (4),   ̃ holds. Consider now the case where ̃ +   1. In this

case, the additional firm does not produce, and the pricing of producing firms does not change.

Consequently, markups stay constant. Consider next ̃ +   1. Denoting the price of firm 

before and after entry of the additional firm with , we have



̃
=


¡


¢
+ e ()−1 + 



There are now two cases to distinguish. First,   1, implying   1. In this case, ̃  1

holds by   ̃. Second,   1, implying   0. In that case, we write with (23)

 − ̃

 ()

= − e³´−1
=



2− 1
½
− 



h
1− 

³
2− −

´i
+

 − 1


0max

0

∙
− 



¸¾
The expression on the right is positive, proving ̃  1 in the second case, too.

The Lemma distinguishes two cases. First, the additional firm engages in production and

impacts the whole market by depressing markups. Second, it does not pay for the additional firm

to produce and sell its goods, and consequently leaves the market unaffected. As this second case

is a possibility, the entry of additional firms decreases the markup of any preexisting firm only

weakly.

Our next aim is to conduct comparative statics with regard to the model’s parameters. As a

preparatory step, we write for the relative markup of the highest quality firm

+ − 1 = 

2− 1
½
 − 1


0max

0
+

µ



− 1
¶
− − 1



¾


we have   0 and   1 so that 




+   +  for all   0. Second, if   0, we verify   1, so

that all markups are positive if   0 holds. If, instead,   0 then 




+    +  holds again for all

  0 by   1. It is thus sufficient to show +  1. By (23), this condition is satisfied as long as max00
is large enough. Obviously, it may happen that max00 is very small. In that case, however, top-quality firms do

not sell at all, and we can renumber firms, indexing the highest quality firm with positive output with  = 0. This

renumbering increases  up to the point where +   1 holds.
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With the explicit formula for the prices (20), the operating profits from (8) are thus

 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
 ( − 1)

µ
+ − 1
 − 1

¶2
20
0



max
if  = 0

¡
2 − 1¢Ã

¡


¢
+ − 1

 − 1

!2
2




max
if   0

(24)

Observe with (21) and (23) that the limit

lim
→1

+ − 1
 − 1 =

1√
3

½
0max

0
− 

¾
is finite. Thus, in the case of equal relative spacing, the operating profits are, by (21) - (23) and

the limit above, continuously differentiable for all  ≥ 1 and satisfy, moreover

 → 0 ( → 1)

Moreover, and very importantly, we can sign the slope of the ERSE’s location, i.e., the function

̄().

Proposition 3 Let 0    ̄ ∞. Then, the following statements hold.
(i) There is a 0  0 so that ̄() is weakly increasing on [ ̄] for all  ∈ [0 0].
(ii) There is a 0 ≥ 0 so that ̄() is constant if and only if  ≤ 0.

Proof. See Appendix.

In combination with the proof of the existence of an equilibrium (see Proposition 1), Propo-

sition 3 represents the main result of our analysis. It establishes the comparative statics of the

equilibrium degree of spacing with regard to the entry cost.22

This proposition shows that higher setup costs increase the relative spacing between quality

levels. Intuitively, firms must be compensated for increases in setup costs by increased profits.

The latter profit increases are brought about by larger market shares and by higher markups and,

ultimately, by a wider spacing parameter ̄. Larger markets induce more frequent firm entry and

a higher density of quality supply, because higher sales and profits allow a faster recovery of setup

costs. Markups, in turn, are decreasing in the density of supply and are thus decreasing in the

market size.

22The condition on the interest rate  is a technical restriction without an economic interpretation.
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In our modeling strategy, the direction of technological advance follows from firms’ desire to

differentiate their products from the competition. This causality contrasts with the motivation

for research in most existing Schumpeterian growth models, where the motive for innovation is to

undercut the competition in effective per-unit costs. This principal difference in the motivation

of firms to conduct costly R&D is associated with the key implications that the degree of product

market competition (PMC) depends positively on the rate of entry, as only frequent entry can

give rise to dense competition in the quality space, and thus, to a high degree of PMC. In our

setup, the degree of product market competition (PMC) and the frequency of innovation are thus

increasing, whereas this relation is reversed in models a là Aghion and Howitt (1992).

Together with Lemma 2, Proposition 3 also determines the impact of market size () and

marginal production costs () on the spacing ̄ of the ERSE. In particular, increases in  and

 have a similar effect on ̄ as reductions in setup costs — all of them decreasing the equilibrium

spacing ̄. Clearly, a larger market induces, certeris paribus, higher profits and allows firms to

generate more profits. At constant setup costs, larger markets therefore experience more frequent

entry of firms at closer distances: the competitive pressure among firms rises.

Surprisingly, productivity growth at the margin (a decrease in marginal production costs )

increases relative spacing and reduces the toughness of competition. This adverse effect of mar-

ginal productivity growth on competitive pressure may appear somewhat puzzling. To understand

the forces operating to this effect, observe that the preference specification generates, just as or-

dinary CES preferences, relative firm markups − 1 that are independent of costs (see prices
(20)). Put differently, at a given relative spacing, operating profits constitute a constant share of

revenues. Hence, when quality levels are constant, an increase in marginal productivity (a drop in

marginal costs) tends to curb revenues and thereby depresses operating profits.23 As firms must

cover their setup costs, however, the productivity gains that curb profits per consumer must come

about with increases in market share, i.e., with a wider equilibrium spacing. This widening of

relative spacing does, at the same time, increase relative markups. Hence, competitive pressure

decreases as marginal productivity grows.

Notice that for this effect to play a crucial role requires the assumption that demand does

not react along an intensive margin. In particular, consumers do not react to price changes by

consuming more or less but by switching to other firms.

23This aggregate relationship does not, of course, mean that each single firm can raise its profit by decreasing its

productivity.
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5 Endogenous Growth

Up to this point, we have treated the growth of valuations (10) and interest rates as exogenous

and have neglected, moreover, resource constraints. In this section, we repair these shortcomings.

In particular, we show that the partial equilibrium model above is compatible with individual

optimization under balanced growth. In doing so, we postulate spillover effects of innovation and

solve for endogenous growth rates.

The balanced growth path, if it exists, is characterized by a constant growth rate of income,

, as well as a constant rate of innovation. Under the simplifying assumption () = 1 regarding

setup costs from (3), constant expenditure on innovation implies that income grows at the same

pace as the top quality, max, raised to the power of . Thus, max grows at the rate . Constant

innovation also implies that, within each industry, the top quality increases by the factor ̄ each

period of length∆ (compare (16)) — or ∆ = ̄ so that  = (−1). This identity determines
the relation between the growth rate of income, , and that of valuations, .

Concerning the growth of valuations (10), we simply assume that the individual valuation  is

proportional to a power of income, . By the above identity relating growth rates, this assumption

leads to

 = (1−1) (25)

Together with the utility (1) this specification implies that income and quality are complementary.

The higher a consumer’s income, the higher is  and thus her willingness to pay for quality.

Our specific functional form (25) substantially simplifies the closing of the model, but at the

cost of departing from the standard theory. More precisely, the literature following Shaked and

Sutton (1982) postulates that  is a function of residual income (income minus the expenditure

on the differentiated good). While this standard approach can be read as a shortcut for the

consumption level of the homogeneous numeraire, no such interpretation is available for our

specification above.24 Nevertheless, we stress that any previous result is independent of our

peculiar assumption, and only the endogeneity of interest and growth rates rely on it.

To identify a path of balanced growth, we return to the notation of many identical industries,

indexed by  ∈ [0 1]. Within industry , a set of qualities  is produced. The set  expands

over time and is therefore indexed by .

24 In fact, we leave the ground of classical consumer theory here.
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Technology Spillovers. The structure of the model implies that, in addition to endoge-

nous innovation through market entry, more general efficiency gains must be generated in order

to sustain positive growth. More precisely, as an increasing number of high-quality goods are

produced at higher unit labor requirements, the effective labor supply must increase at a cor-

responding rate. We therefore define a time-dependent parameter of labor productivity by ,

which multiplies individual labor endowments. Further, we postulate that  depends positively

on all qualities produced up to time  in the following way

 =

Z 1

0

X
∈

[ ]
 

Identifying a variety with the date at which it has been invented, we write  and compute  as

the integral

 =

Z 

−∞
( )

 Ψ() 

where Ψ is the density or rate at which the  are invented.

Constant innovation activity requires that the average rate of innovation be constant over

time. Thus, we assume that in any two time intervals of equal length, the same number of

additional qualities are invented. Consequently, the rate at which qualities appear on the time-

line is constant: each , there are ∆−1 qualities invented (∆ from (16)), and the density Ψ of

qualities is ∆−1.

As argued above, the growth rate of the maximal  equals  or ( − 1). Together, this
argument implies that labor productivity becomes

 =




∆

Z 

−∞
−(−1)(−)  =

1

 ln(̄)


 

Finally, as income is proportional to labor productivity,  = ̇ must hold so that balanced

growth requires  =  and

 =
1

 ln(̄)
 (26)

In sum, when production costs, preferences and spillover effects are governed by  in the

way specified by (1), (3), (4), (25) and (26), the model may generate balanced growth. An

additional condition, however, is that individuals save at constant rates. We next propose a setup

of individual optimization that generates constant savings rates.

Consumer Optimization. Nesting the paper’s model in a standard dynamic setting with

infinitely lived consumers and dynamic optimization is tricky for the following reason. The some-

what peculiar instantaneous utility (1) implies that the composite of differentiated goods is a
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non-linear function of expenditure. More precisely, the relative price between the quality aggre-

gate and the homogeneous good is not constant in expenditure. A consumer reacts to these price

effects when trading off a marginal increase of consumption today against consumption tomorrow.

This reaction distorts the standard intertemporal optimality conditions. Worse yet, the price ef-

fect of a marginal quality upgrading of the bundle (1) is different for rich and for poor consumers,

due to the varying markups from (20). We cannot hope to easily bring the resulting heterogeneous

savings rates to a constant aggregate one while preserving the expenditure patterns that generate

valuations (10) and (18).

To resolve these difficulties, we turn to a setting of overlapping generations, assuming that

at each infinitesimal time interval , the constant mass  ·  of individuals is born, which
constitutes a fraction of a continuum of overlapping generations. Individuals live for  time units

so that, at each point in time,  individuals populate the economy. An individual born at  is

endowed with  labor units, where  is distributed as


(−1)
 ∼ () (27)

( from (2)). Individuals save their labor income to consume at the end of their lifes. To avoid

the difficulties of intertemporal expenditure allocation sketched above, the final consumption

period has length zero. Lifetime wealth  is proportional to labor productivity . With the

adequate choice of the constant in (27), this implies that  =  (−1), and hence valuations 

are distributed according to (2).25

Aggregate Savings. Consider the cohort born at 0, which is endowed with labor  . At

time  ∈ (0 0 +  ) the cohort earns  from labor income, which it saves. Consequently,

at period  of its life (we use that  grows at rate , keeping in mind that  = ( − 1)), its
wealth amounts to

0 =

Z 0

0−
−+  =

1− (−)(0−)

 − 






Hence, the wealth of the oldest living cohort, which equals aggregate consumption , is

 = − =
(−) − 1

 − 




 (28)

The total wealth of all living cohorts, expressed in terms of , is

 =

Z 

0

− =
 −

 − 
 (29)

25The choice of the constant is not essential, as, by (10), a change in the constant amounts to a re-normalization

of time.
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Investment. Total investment goes to the invention of blueprints. Because each ∆ time units

the qualities of all industries are upgraded exactly once (see (16)), ∆−1 · new blueprints appear
in each infinitesimal time interval , generating the flow of investment costs

 = ∆
−1  (30)

(Recall that () ≡ 1.)

Resource Constraint. We write  for the value of the total output produced at time .

As every dollar produced ultimately ends up in the pockets of individuals, and individual income

consists of returns to savings plus labor income, we have

 =  + (31)

In the firms’ books, the total value of output appears as the wage bill plus the flow of operating

profits. Summing the value of all firms implies

 = +  (32)

where we have set  =
R 1
0

P
∈  .

26 With these equations, we are ready to pin down the

evolution of the economy and the interest rate.

Market Clearing. Capital market clearing requires that total investment equals output

minus consumption expenditure (− = ). Using expression (31) and collecting  and 

from (28) and (29), this condition yields

1

 − 

"
(−) − 1
( − )

− 1
#
=




 (33)

Observing that the expression (( − 1) − 1) = P∞
=2 !

 is increasing in , we know that

condition (33) uniquely determines the difference between interest rate and growth rate,  − .

Thus, (33) pins down expenditure on consumption (28) and total wealth (29).

To close the model, we finally combine (31) and (32) to observe that at each point in time,

the total returns to savings equal the total operating profits. Writing this condition in per capita

terms renders



(−)−1
(−) − 1
 − 

 =



 (34)

26We avoid the Greek Π to avoid confusing total instantaneous profits with the discounted flow of profits.
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Because  = (−1), we can apply Lemma 2 (ii) to the transformation (  )→ (  ).

Hence, this transformation leaves the relative spacing  unchanged, which implies that per capita

profits, on the right of (34), remain constant. Further, the expression on the left is increasing in

, thus determining the unique equilibrium interest rate . Finally, (33) determines the growth

rate of the economy, , and thus the growth rate of valuations is  = ( − ).

In summary, this last part of the analysis has demonstrated that long-run economic growth can

arise from entrants’ desire to differentiate their output in the quality space if, on the one hand,

increasingly wealthy consumers are willing to pay for higher quality and, on the other hand,

private firms’ innovation generates income growth by enlarging the set of technologies available.

In this way, the firms’ research efforts generate exactly the income growth that is needed to spur

demand for ever higher-quality goods.

6 Conclusion

The “Schumpeterian” class of endogenous growth models has focused almost exclusively on in-

dustries where the technological leader takes over the entire market.27 A major shortcoming of

this modeling strategy is that only one firm is active at a time, so that the degree of product

market competition has to be introduced via exogenous parameters. In particular, the toughness

of product market competition does not arise from firms’ decisions to differentiate their products

from those of their competitors.

In this paper, we address this shortcoming by developing a new model suitable for analyzing

the competition, innovation, and growth nexus in vertically differentiated markets featuring a

large number of firms and an endogenous degree of product differentiation. We focus on one-

time innovation decisions and examine how the demand parameters themselves are shaped by the

degree to which innovators distinguish their products from existing ones.

Our model helps to understand how firm profits, firm innovation, and the toughness of compe-

tition emerge endogenously. This understanding enables us to analyze how market characteristics

influence product market competition and how, in turn, the toughness of competition affects

investments in innovation and economic growth.

27Aghion et al. (1997) and Aghion et al. (2005) analyze an economy with two firms in a setup where demand

parameters are fixed, but firms can innovate repeatedly to "escape" their competition.
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Our work points out that creative destruction may work through pro-competitive effects rather

than through the "business stealing" mechanism found in the existing literature. In our setup,

business stealing by new entrants is limited in the sense that innovators only sell to a set of

consumers whose demand was relatively poorly matched by the supply of pre-existing firms.

Consequently, it is not warranted that innovation occurs too often in the decentralized economy.

On the contrary, new entrants make the set of available goods more differentiated, which is shown

to exert a pro-competitive effect on all firms, leading to a reduction of firm markups by all firms.

This reduction is strongest for those firms closest to the technological frontier.

A Appendix

Proof: Lemma 1. (i) Under 0 = , 
0 = −1 and 0 = , the cutoffs from (5) become

0 = −1 and 0+1 = −1+1

Now, based on (2), the transformation 0 = −1 induces a new cdf ̃ with

̃(0) = () (35)

With this identity and 0 = −1, compute

̃0(0) = lim
→0

̃(0)− ̃(0 − )


= lim

→0
()−( − 1−)


= 1−0()

Hence, (7) is satisfied, since

̃
¡
0+1

¢− ̃
¡
0
¢
=  (+1)− ()

and

¡
0 − 0

¢ ∙
̃0
¡
0+1

¢ 0+1
0

− ̃0
¡
0
¢ 0
0

¸
= ( − )

∙
0 (+1)

+1


−0 ()





¸
where 00 = −1 and 0+1

0
 = −1+1 has been used. This shows that

0 =  solves the transformed pricing system. By (4), (8) and (35) 0 =  follows,

completing the proof of (i).

(ii) Under 00 = , 
00 =  and 00 =  the cutoffs from (5) become

00 =  and 00 = 
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As in (i), the transformation 00 =  induces a new cdf ̂ with

̂(00) = () and ̂0(00) = −10()

This implies that (7) is satisfied, since

̂
¡
00+1

¢− ̂
¡
00
¢
=  (+1)− ()

holds and with 00 =  and the above¡
00 − 00

¢ " ̂
00

¡
00+1

¢ 00
00
− 

00
¡
00
¢ 00
00

#
=  ( − )

−1
∙



(+1)




− 


()




¸
where 0000 =  and 

00
+1

00
 = +1 has been used. This shows that 

00
 = 

solves the transformed pricing system. By (8) and ̂(00) = (), 00 =  follows, completing

the proof of (ii).

Proof: Proposition 1. Consider the location choice of the first entrant ( = 1), given

{}≤0 satisfying (9) with prevailing . Observe that 1 = 1 is not optimal since Bertrand

competition would imply Π1(1) = 0 (regardless of 1) in this case, thus violating the free entry

condition. Hence,  = 1 implies 1  .

We show next that 1   holds for some  large enough. Assume not: 1 ≥  for all  ≥ 1.
This implies 1 → ∞ as  → ∞. Consider this limit case, where  = 0 for  ≤ 0 and  = ∞
for   1 must hold. In this case firm 1 is effectively the monopolist in the market at all times

after the entry date 1. Consider a time 
0  1 with 1(

0)  0 and denote the optimal price with

0. A consumer with valuation  purchases 1 at price 
0 if and only if 1 ≥ 0. The cutoff at

the lower bound is thus v
¯
= max{min 0}. If firm 1 follows the pricing strategy 1() = 0

for   0, the dynamics from (10) imply that (1()) = 0(
0). Therefore, we have

1() =
£
1−0(

0)
¤
(0 − ) ≥ (−1)1(0)

Hence, the discounted value of profits at time 0Z ∞

0

1() = 1(
0)
Z ∞

0

(−)

is unbounded. This implies that 1(1) = 0 at entry date 1. (It implies even more: production

only becomes active at infinite time after entry). But at the entry date, the discounted flow of

profits just covers the setup cost: Z ∞

1

1()−  () = 0
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must hold. Now, consider a potential entry at time 1 but at location ̃1 = −1 (  0). For

this strategy (whose payoff is denoted by ae), Lemma 1 impliesZ ∞

1

̃1()−  (̃1) = (−1)
Z ∞

1

−1()− − (1)

The factor (−1) stems from the time shift of profits associated with ̃ = −(−1). Total

profits of this alternative strategy are thus positiveZ ∞

1

̃1()−  (̃1)  −
µZ ∞

1

1()−  (1)

¶
= 0

contradicting the initial assumption of ’s optimality. This shows that 1   holds for  large

enough.

Together, with 1   at  = 1 continuity, we conclude that there is a   1 so that 1 = .

Denote this by ̄. At this  = ̄, the firm  = 1 locates in the quality space, extending equal

relative spacing (9) to all  ≤ 1.
Take the case of  = 1 = ̄ and call the spacing problem of the remaining additional firms

( = 2 3 ) the residual spacing problem. With the notation

0 = +1 ( ≥ 1) 00 = ̄0 = 1 and  0 =  + −1( − 1) ln ̄ (A1)

the residual spacing problem solves the corresponding system (13) - (15) above, where now all

state and choice variables bear a prime (0 0 0). Apply Lemma 1 (i), (10) and (A1) to verify

that



³
  Γ̃0̂

0Γ0(∗)0−1
0
0 

0
 

0
−1  

0
1 ̄
´
= ̄

³


0
 Γ̃0̂

0Γ0(∗)0−10 
0
 

0
−1  

0
1 ̄
´

Notice that the setup cost (3) satisfies  (Γ
0(∗)
0−1 

0
0) =  (Γ

0(∗)
0−1̄ 0) = ̄ (Γ

0(∗)
0−1 0). Hence,

̄ factors out of the right hand side of (13) and of the square brackets in (14). Consequently, the

solution of the residual spacing problem coincides with the original problem, implying 01 = 2 =

1 = ̄. A simple induction argument completes the proof that  ≡ ̄ for all  ≥ 1.
Finally, (10) and the transformation (A1) show that two consecutive entries occur at dates sat-

isfying max() = ̄−1max(+1). With (10), this is (+1−) = ̄−1 and proves the second

statement.

Proposition 2. Substitution  =  −  and recursive formulation (19) of the prices

gives

2 [ + ] =  +
1

 + 1
[+1 + +1] +



 + 1
[−1 + −1]
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for   1. With  = (1 + )
£
2(1 + )−  − 1−

¤
this is 2( + 1) = +1 + −1. The

equation

2 − 2( + 1) +  = 0 (36)

has two roots,  =
h
 + 1 +

p
2 +  + 1

i
larger than unity and  =

h
 + 1−

p
2 +  + 1

i
,

smaller than unity. The general solution to the recursive series is thus

 = ̃ + ̃ +  (37)

where ̃ = 0 because of   1 and the transversality condition lim→−∞  = 0. Equation (19)

for  = 0 is 20 = 0 + (0 − −1) max + −1 and implies

2
h
̃+ 0

i
= 0 + 0 (1− 1) max + ̃+ −1

Solving for ̃ and replacing  = ̃0 proves (23).

Proof: Proposition 3. As a preparatory step, define net profits of the first entrant as a

function of existing spacing , setup costs , entry date  and location choice ̂, while suppressing

dependence of Ψ on parameters other than  and normalizing 0 = 1:

Ψ(  ̂ ) = Π(̂ )−  (̂)

Free entry implies that equilibrium entry date and location ∗() and ∗() satisfy

Ψ( ∗() ∗() ) = 0 (38)

for all  and  and optimal location choice implies

Ψ∗( 
∗() ∗() ) = 0 (39)

Taking derivatives of (38) w.r.t.  and using (39) yields

Ψ +Ψ∗
∗


= 0 (40)

At the ERSE, (38) is Ψ(̄() ∗(̄() ) ̄() ) = 0. Taking derivatives w.r.t.  yields

0 =

∙
Ψ +Ψ∗

∗



¸
̄


+Ψ∗

∗


+Ψ = Ψ∗

∗


+Ψ

where equation (40) has been used. With Ψ = −(̄) this implies
∗


=

(̄)

Ψ∗
 (41)
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Now, taking derivatives of (39) w.r.t.  leads to

0 = Ψ∗ +Ψ∗∗
∗


+Ψ∗∗

∗


 (42)

At the ERSE, (39) is Ψ∗(̄() 
∗(̄() ) ̄() ) = 0. Taking derivatives w.r.t.  yields

0 =

∙
Ψ∗ +Ψ∗∗

∗


+Ψ∗∗

¸
̄


+Ψ∗∗

∗


+Ψ∗

or, with (42),

Ψ∗∗

∙
1− ∗



¸
̄


= −Ψ∗∗

∗


−Ψ∗

Equations (3) and (12) imply Ψ∗ |=̄ = (̄) − (∗) and Ψ∗∗ |=̄ =  0(̄) − ∗(
∗) and

Ψ∗ = − 0 (∗) so that we have with (41)

Ψ∗∗

∙
1− ∗



¸
̄


=

½
∗(

∗)− (∗)
 0 (̄)
(̄)

¾
(̄)

Ψ∗
(43)

The second order condition of (43) and the firm’s optimization yields Ψ∗∗  0, while (17)

implies that the term in the square brackets is positive. Moreover, by definition of ∗, Ψ∗  0

holds. Consequently, ̄() is increasing (constant) in  if and only if the expression in the slanted

brackets on the right is negative (zero).

(i) Whenever (∗) = 0 the expression on the right is zero and thus ̄ is constant in . We

thus need to show that at the ERSE  ln((∗)(∗))∗  0 holds for (∗)  0. To this

aim, recall that () from (3) was assumed to satisfy 
£
(̄)̄

¤
̄ ≤ 0, or, with  = ̄,

 ≤  0 (̄) (̄). It is thus suffices to show (remember 0 = 1 so that 1 = ∗)



1
ln((∗))  1

With profits 1 = (1− 1)(max− 1)max and 1 = (1 − 0)  (1 − 0) (compare (5) and (6),

shifting up indices) and the envelope theorem the condition above is equivalent to

−̇1
1 − 1

− 1

max − 0

µ −̇0
1 − 0

− 1 − 0

(1 − 0)2

¶
 

where ̇ ≡ 1. With (5) and (19) (shifting up indices) this condition is

̇0 + 1 − ̇1   (1 − 1) (44)

To compute ̇0 write the system (19) as⎛⎜⎜⎝
2 −1 0 0

−(0 − −1) 2(1 − −1) −(1 − 0) 0

0 −(−1 − −2) 2(0 − −2) 

 0  

⎞⎟⎟⎠  =

⎛⎜⎜⎝
1 + (1 − 0)max
(1 − −1)0
(0 − −2)−1



⎞⎟⎟⎠ (45)

38



where  ≡ (1 0 ). Taking derivatives w.r.t. 1 yields⎛⎜⎜⎝
2 −1 0 0

−(0 − −1) 2(1 − −1) −(1 − 0) 0

0 −(−1 − −2) 2(0 − −2) 

 0  

⎞⎟⎟⎠ ̇+

⎛⎜⎜⎝
0 0 0 0 

0 2 −1 0

0 0 0 0

 

⎞⎟⎟⎠  =

⎛⎜⎜⎝
̇1 + max

0
0



⎞⎟⎟⎠
and evaluating at the ERSE leads to⎛⎜⎜⎝

2 −1 0 0

−1 2( + 1) − 0

0 −1 2( + 1) −
 0  

⎞⎟⎟⎠ ̇ =

⎛⎜⎜⎝
̇1 + max


−20+−1+0

1−0
0



⎞⎟⎟⎠ (46)

Replicating the proof of Proposition 2, we obtain that ̇ satisfies ̇ = ̇0 with  =  + 1 +p
2 +  + 1 for  ≤ 0. The second row of (46) thus becomes

−̇1 + [2( + 1)− ] ̇0 = −̇1 + ̇0 = − 20 − −1 − 0

1 − 0

where we have used that  solves (36). Combining this equation with the first row of (46)

(2̇1 − ̇0 = ̇1 + max) leads to

[2− 1] ̇0 = ̇1 + max − 2 20 − −1 − 0

1 − 0
= ̇1 + max − 21 − 20 + 0

1 − 0

where we used the second row of (45) in the last step. With 1 = (1 − 0)(1 − 0) and

max − 1 = (1 − 1)(1 − 0) (compare (5) and (19)), we have

̇0 =
1

2− 1
½
3max − 61 + ̇1 + 2

1 − 0

1 − 0

¾
and hence

̇0 + 1 − ̇1 =
1

2− 1
½
3 (max − 1)− 2

µ
̇1 − 1 − 0

1 − 0

¶
− [2− 4] (̇1 − 1)

¾
(47)

We show next that (44) holds for all  ∈ [∗∗ ∗∗ + ] with   0 small enough and ∗∗ defined as

the date where max = 1 holds. At this date we have 1 = 1 by (19) so that

̇0 + 1 − ̇1 =
−2

2− 1
∙µ

̇1 − 1 − 0

1 − 0

¶
+ [− 2] (̇1 − 1)

¸
 0

where the last inequality holds by   2 and

1 =
1 − 0

1 − 0


1 − 0

1 − 0
 ̇1

for all   1, showing (44). By continuity, there is a   0 so that (44) holds for all  ∈ [∗∗ ∗∗+].
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Now, since 1 from (24) is increasing in , there is an   0 so that  ∈ (∗∗ ∗∗+) holds whenever

1  . This last condition holds for   0 small enough as Ψ∗  0 implies 0  −1 + Π or

1  (̄) (48)

Finally, we restrict the pair of parameters ( ) to the compact set [0 1]× [ ̄]. Hence, there are
min and max with 1  min  max ∞ so that ̄ is restricted to the compact set [min max].

Consequently, there is a uniform 0 ≤ 1 so that for all ( ) ∈ [0 1]× [ ̄] we have 1   and

(44) holds uniformly. This proves the statement.

(ii) First notice with (43) that ̄ is constant if (∗) = 0. If (∗) = 0, (40) and (41) imply

∗(̄() )


=
∗


= −Ψ

Ψ∗
=

(̄)

Π
=
1



and we have ∗() =  + ln(). As profits from (24) are increasing in , this implies that,

if (∗)|=1 = 0 for 1  0 decreases in  leave ̄ unchanged and decrease ∗. Consequently,

(∗) = 0 holds for all   1.

Using ∗() = +ln() and rescaling time we can write ∗() = ln(). But by (24) there is

a ̃max ∈ (0∞) so that +−1 = 0, implying that 1 = 0 marginally, and 1  0 if max  ̃max.

Therefore, at entry cost ̃ ≡ (̃maxmax(0))1 we have ∗(̃) = −1 ln(̃maxmax(0)) and

max(
∗(̃)) = ̃max

Hence, 1 = 0 holds for all  ≤ ̃ and 1  0 else. Together with (i) and (43) this proves the

statement.
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A.1 Table A1: List of data and Constructed Concordance

 

Table A1 - Patenting, Demand Elasticity and Vertical Differentiation in 38 Industries 

Sector Name in Johnson (2002) 1998 Patents (in Thousands) Concorded to Bils Concorded to Broda et al. 2006 

DEN FRA DEU ITA NLD UK  and Klenow (2001) Elasticity of Subst. HS Code

Fishing, operation of fish hatcheries 1 8 11 4 8 6 0 8.924688 30 

Growing of vegetables, horticultural 1 7 14 4 5 4 0 3.674227 70 

Growing of fruit, nuts, beverage 0 1 1 0 1 0 0 8.507714 80 

Growing of cereals and other 7 32 77 18 22 19 0 4.692318 100 

Manufacture of food products 22 88 231 66 123 84 0 3.923592 160 

Manufacture of tobacco products 0 4 20 8 1 7 0 5.284598 240 

Other mining and quarrying 0 2 6 1 1 1 0 2.304289 250 

Mining of metal ores 1 6 22 3 2 4 0 25.0319 260 

Mining of uranium and thorium 0 0 1 0 0 0 0 1.162808 261 

Mining of coal and lignite 0 1 4 1 1 1 0 3.555673 270 

Manufacture of coke, refined petroleum 4 41 68 11 18 15 0 3.555673 270 

Extraction of crude petroleum, natural 2 57 96 14 24 36 0 3.733456 271 

Manufacture of chemical products 81 491 1411 170 254 427 0 1.276282 280 

Manufacture of pharmaceuticals 47 187 432 62 92 196 0 2.649367 300 

Manufacture of paints 1 20 91 6 14 15 0 5.003189 320 

Manufacture of soap 2 25 93 9 32 40 0 5.418962 340 

Manufacture of pesticides 4 25 68 11 9 20 0 6.257432 380 

Manufacture of rubber and plastics 12 114 436 78 67 74 0 1.340096 390 

Tanning and dressing of leather 0 23 25 29 5 4 0 10.12166 410 

Manufacture of wood products 3 20 74 17 7 9 1 5.239073 441 

Manufacture of paper products 4 32 229 31 21 35 0 3.417688 481 

Publishing, printing and reproduction 3 33 174 23 27 27 0 1.788363 490 

Manufacture of man-made fibers 1 12 45 8 6 8 0 6.020334 540 

Manufacture of textiles 3 34 156 33 16 23 0 6.020334 540 

Manufacture of wearing apparel 1 12 36 18 2 6 1 2.182875 610 

Manufacture of basic precious metals 0 14 49 7 3 7 1 2.029337 711 

Manufacture of basic iron and steel 1 25 101 24 5 13 0 2.955521 720 

Manufacture of fabricated metal 6 94 335 60 32 57 0 5.893758 730 

Casting of iron and steel 1 9 33 7 2 5 1 1.472366 732 

Casting of non-ferrous metals 0 0 0 0 0 0 0 2.878988 741 

Manufacture of machinery 48 737 2281 426 363 398 0 6.14374 840 

Manufacture of electrical machinery 1 18 40 6 7 7 0 9.124066 844 

Manufacture of office machinery 6 187 407 70 169 118 1 3.567555 847 

Manufacture of television, radio recvr. 1 65 157 20 112 41 1 2.844963 852 

Manufacture of radio, television 7 281 632 74 249 139 1 2.844963 852 

Manufacture of insulated wire, cable 18 40 6 7 7 1 0 4.764942 854 

Manufacture of electronic valves 95 248 35 60 37 3 0 4.764942 854 

Manufacture of railway 23 105 13 4 10 1 0 4.018861 860 

Manufacture of motor vehicles 391 1461 192 66 147 13 1 16.19744 870

Table A1
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