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Abstract

Within the context of the firm location choice problem, Guimarães et al. (2003)
have shown that a Poisson count regression and a conditional logit model yield identical
coefficient estimates. Yet, the corresponding interpretation differs since these discrete
choice models reflect polar cases as regards the degree with which the different loca-
tions are similar. Schmidheiny and Brülhart (2011) have shown that these cases can
be reconciled by adding a fixed outside option to the choice set and transforming the
conditional logit into a nested logit framework. This gives rise to a dissimilarity param-
eter (λ) that equals 1 for the Poisson count regression (where locations are completely
dissimilar) and 0 for the conditional logit model (where locations are completely sim-
ilar). Though intermediate values are possible, the nested logit framework does not
permit the dissimilarity parameter to be pinned down. We show that, with panel data
and adopting a choice consistent normalisation, the fixed outside option can also be
introduced into the Poisson count framework, from which the estimation of the dissim-
ilarity parameter is relatively straightforward. The different location choice models are
illustrated with an empirical application using cross-border acquisitions data.

JEL classification: C25, F23
Keywords: Conditional Logit Model, Location Choice, Nested Logit Model, Poisson

Count Regression
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1 Introduction

Econometric models drawing on the discrete choices that are revealed when, for example,
firms decide to locate in a given place, provide a popular framework to study the effect of
economic, political, or other factors on the geographical distribution of economic activities.
Location choices can often be observed on a comprehensive basis since they manifest in such
things as the establishment of new plants. For the case of foreign direct investment (FDI),
for example, Devereux and Griffith (1998) uncover the extent to which corporate taxes
influence the decision of US multinational enterprises (MNEs) to install local production
capacity either in France, Germany, or the United Kingdom. Similarly, Buettner and Ruf
(2007) analyse how corporate taxation affects the observed distribution of foreign plants
affiliated to German multinationals, whilst Kim et al. (2003), Crozet et al. (2004), and
Devereux et al. (2007) all study the role of agglomeration effects for FDI through the lens
of individual location choices. All these studies account for the discrete nature of location
choices by using an empirical framework of the binary or conditional logit class. Rather
than contemplating the decisions of individual firms, a different strand of the literature
draws on aggregated counts of such location choices. Considering again the example of FDI,
Kessing et al. (2007), Herger et al. (2008), Hijzen et al. (2008), and Coeurdacier et al.
(2009) all employ the number, or count, of cross-border acquisitions (CBAs) to uncover the
determinants affecting the desire of MNEs to place economic activities in a given location.
All these studies account for the discrete and non-negative nature of count data by employing
regressions of the Poisson class.

The different approaches to analysing the empirical determinants to locate economic activi-
ties raise the question of the econometric and economic differences between the conditional
logit approach with individual, and the Poisson count regression with aggregate location
choices. Though these econometric models have been developed independently, they share
some similarities. Specifically, for both cross-sectional and panel data, Guimarães et al.
(2003) have shown that the conditional logit model and Poisson count regression give rise to
identical coefficient estimates. This favours the usage of count data since the aggregation of,
say, location choices entails a possibly dramatic reduction in the number of observations re-
quired for estimation. However, according to Schmidheiny and Brülhart (2011)—henceforth
SB—it is nevertheless important to distinguish between alternative location choice mod-
els. In particular, though the coefficient estimates are identical, the results of the Poisson
count regression and conditional logit model differ when re-expressing the results in terms
of elasticities. The reason is that in the Poisson count regression the aggregate number of
location choices is used as the dependent variable, which can change with the value of the
regressors. Borrowing the terminology of SB, the Poisson count regression reflects a ”posi-
tive sum world”. Furthermore, when using count data, the locations are segmented in the
sense that only the local conditions, but not those elsewhere, affect the dependent variable.
Conversely, the conditional logit model reflects a ”zero sum world” since individual location
choices are the dependent variable whilst their total number is exogenously fixed. This gives
rise to spillover effects in the sense that an additional choice of a given location is always
offset by an equivalent reduction elsewhere.

SB show that adding a fixed outside option gives rise to a nested logit model that encom-
passes the polar cases embodied in the Poisson count regression and the conditional logit
model. This may be intuitive since the main innovation of transforming the conditional logit
into a nested logit model is to summarise (location) choices into groups, or nests, that can
be more or less similar. The degree of segmentation between these groups manifests in the
so-called dissimilarity parameter λ (sometimes also called the log-sum coefficient or inclusive
value parameter). Within the context of location choices, SB show that the Poisson count
regression implies that λ = 1, that is the elemental options are completely dissimilar, whilst
the conditional logit model arises when λ = 0, that is elemental options are entirely similar.
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Yet, λ can in principle adopt any intermediate value on [0, 1]. Unfortunately, the nested
logit framework of SB does not permit them to pin down the empirical value of λ.

This paper contributes to the literature by suggesting a way to extract the dissimilarity
parameter from aggregated count data within a Poisson regression framework. One reason
why λ cannot be estimated in the SB framework is that their nested logit model is over-
parameterised in terms of an overlap between the coefficient pertaining to the fixed outside
option and the dissimilarity parameter that, hence, drops out of the likelihood function.
It is well known that nested logit models suffer from an identification problem and, hence,
require some suitable normalisation of the so-called scale parameters (Hunt, 2000; Ben Ak-
tiva and Lerman, 1985; Hensher et al., 2005, ch.13). This step, which is arguably often
ignored in applied work, is crucial insofar as it gives rise to different versions of the nested
logit model with different properties (Hunt, 2000; Hensher and Greene, 2005). Thereby, a
minimal requirement would be that the normalisation is consistent with the basic principles
that are thought to guide the (location) choices (Koppelman and Wen, 1998). For example,
with a choice consistent normalisation, adding the same constant to all options should not
change the choice outcome. In this paper, we show that the normalisation of SB is not
choice consistent in this sense and propose an alternative normalisation to determine the
dissimilarity parameter λ.

Based on a choice consistent normalisation, we then introduce the dissimilarity parameter λ
to the Poisson count framework using aggregate location choice data. From this, with panel
data, the dissimilarity parameter can be computed from the group effects of the Poisson
count regression without specific knowledge about the number of times the outside option
has been chosen. Intuitively, the group effects of a Poisson count regression with panel data
absorb the discrepancy between the observed number of location choices and the expected
number from a basic Poisson process, and hence provide clues about the relative importance
of the (unobserved) outside option.

For several reasons, the value of the dissimilarity parameter can be important. Firstly,
for a given sample, it indicates how far empirical location choices reflect a positive or zero
sum world. Secondly, the dissimilarity parameter permits us to paint a more nuanced
picture when calculating the resulting elasticities by taking into account such things as
(i.) differences of elasticities across locations (ii.) the magnitude of spillover effects when
the economic or political conditions change elsewhere, or (iii.) the degree of similarity of
locations competing to attract a firm.

There are many applications where the differences between the various location choice mod-
els could matter. We will apply these models to an example where location choices are
revealed in CBA deals within a sample of 25 EU countries. The reason is that this data is
comprehensively available and the location choices of MNEs lend themselves to the intro-
duction of an outside option that could represent such contingencies as exporting to a given
market instead.

The paper is organised as follows. The first part reviews the contributions of Guimarães
et al. (2003) and SB that are relevant for the current context. In particular, to prepare
the ground, section 2 discusses the similarities and differences between the basic conditional
logit model and Poisson count regression. Section 3 provides a synoptic overview of the
nested logit model with a fixed outside option suggested by SB. Section 4 discusses the role
of choice consistent normalisations and, based on this, section 5 shows how the dissimilarity
parameter λ can be computed within a Poisson count framework. Section 6 discusses the
empirical application. Section 7 concludes.
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2 Basic Location Choice Models

Consider the case where a firm wants to place some economic activities in a given location.
Let the firms that are observed to undertake a location choice be indexed with i = 1, . . . , N .
The domicile of the investing firms, or ”source” of the investment, is denoted with s =
1, . . . , S whilst the choice set includes potential target locations, or ”hosts” of the investment,
indexed with h = 1, . . . ,H. With profit maximising firms, the observed location choice—
which is henceforth denoted by li,sh—reveals that the location h with profit opportunity
E[Πi,sh] is expected to outperform all competing alternatives h′ that could in principle have
been chosen instead. Hence,

li,sh =

{
1 E[Πi,sh] > E[Πi,sh′ ] ∀ h 6= h′

0 otherwise.
(1)

The conditional logit model employs location choices such as (1) as the dependent variable.
Thereby, a set of choice-specific variables xsh is thought to impact upon profit expectations
E[Πi,sh] through the linear function

E[Πi,sh] = δs + x′shβ + εi,sh, (2)

where δs is a group effect absorbing source-specific factors. Furthermore, β denotes the
coefficients to be estimated. The component εi,sh accounts for stochastic factors that impact
upon the location choice. To reflect that (1) uncovers the location with the highest expected
profit opportunity, εi,sh is usually assumed to follow a Gumbel, or type 1 extreme value
distribution (McFadden, 1974) where the location and scale parameter have been normalised
to, respectively, 0 and 1.1 The probability that a firm of s chooses h is then given by the
corresponding ratio between their expected number E[nsh] and the total number E[N ] =∑S
s=1

∑H
h=1E[nsh] of location choices within the sample, that is

Psh =
exp

(
x

′

shβ
)∑S

s=1

∑H
h=1 exp

(
x

′
shβ
) =

E[nclsh]

E[N ]
. (3)

Owing to the logistic structure of (3), components such as δs that are fixed across the
different options drop out. Taking the joint distribution over all observed firms i, sources s,
and host locations h yields the log likelihood function

lnLcl(β) =

S∑
s=1

H∑
h=1

nshPsh =

S∑
s=1

{ H∑
h=1

nshx
′

shβ −
H∑
h=1

[
nsh ln

H∑
h=1

exp
(
x

′

shβ
)]}

(4)

from which the coefficients β can be estimated. Guimarães et al. (2003) show that a direct
regression onto the count variable nsh aggregating the number of location choices across
sources and hosts provides an often more convenient way to estimate the coefficients β.
This becomes clear when multiplying (3) with the denominator, which yields a conventional
(panel) count regression with exponential mean transformation of

E[ñpcsh] = exp
(
δs + x′shβ

)
= αsE[npcsh], (5)

where αs = ln(δs) and E[npcsh] = exp(x′shβ). Here, the group effect δs has been retained,
but in principle the transformation between conditional logit and Poisson count regression
works regardless of whether or not δs is included in (2). Assuming that the exponential
mean parameter E[ñpcsh] is Poisson distributed with probability density

1The Gumbel distribution, which is sometimes also referred to as type 1 extreme value distribution, has
a cumulative distribution function of F (`s, ςs) = exp(− exp(−(εi,sh − `s)/ςs)) where `s is the the so-called
location and ςs > 0 the scale parameter. For more details, see e.g. Ben-Akiva and Lerman (1985) or Hensher
et al. (2005, ch.13 and 14).
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P [ñpcsh] =
exp(−E[ñpcsh])(E[ñpcsh])ñsh

ñpcsh!
(6)

yields coefficient estimates for β that are identical to those of the conditional logit model.
To see why, contemplate the log likelihood contribution of s, that is

lnLpcs (αs, β) = −αs
H∑
h=1

exp(x
′

shβ) + lnαs

H∑
h=1

nsh +

H∑
h=1

nshx
′

shβ −
H∑
h=1

lnnsh! (7)

Setting the first derivative of this with respect to αs equal to 0, and solving for αs yields2

the maximum likelihood estimator of

αs =

∑H
h=1 nsh∑H

h=1 exp
(
x

′
shβ
) =

ns
E[ns]

. (8)

Hence, for source s, αs absorbs the discrepancy between the observed number of aggre-
gated location choices ns =

∑H
h=1 nsh and the corresponding expected number E[ns] =∑H

h=1 exp(xshβ) from the basic Poisson distribution. Thereby, 0 < αs < 1 and 1 < αs
represent cases where, respectively, the number of observed location choices are ”underre-
ported” and ”overreported” relative to the basic Poisson count distribution. Substituting (8)
back into (7) and summing over all H hosts yields the concentrated log-likelihood function
(that no longer depends on αs) given by

lnLpc(β) =

S∑
s=1

{ H∑
h=1

nshx
′

shβ −
H∑
h=1

[
nsh ln

H∑
h=1

exp
(
x

′

shβ
)]}

+ constant, (9)

which differs from (4) only as regards a constant with respect to β. Hence, the corresponding
estimates are identical.

The variables xsh enter into the conditional logit model and the Poisson count regression in a
non-linear manner. Hence, the coefficients β do not reflect a marginal effect (Hensher et al.,
2005, pp.383ff.). This warrants the calculation of the elasticity η to reflect the percentage
change of the expected number E[nsh] of location choices between s and h in response to
a percentage change of a given variable xsh,k. Though the same coefficients arise from the
conditional logit model and the Poisson count regression, SB have recently drawn attention
to the differences in the resulting elasticities. Specifically, when expressing the variables in
logarithms, the own-elasticity of the Poisson count regression equals

ηpck =
∂E[ñpcsh]

∂xsh,k

xsh,k
E[ñpcsh]

= βk (10)

where βk denotes the coefficient pertaining to xsh,k and E[ñpcsh] is given by (5). Recall that in
the conditional logit model, individual location choices li,sh are the dependent variable. This
implies that the total number of location choices N is fixed—in the sense of not depending
on xsh—and the expected number of location choices between s and h is the probability
weighted expression E[nclsh] = NPsh. Inserting (3) for Psh yields an elasticity of

ηclsh,k =
∂E[nclsh]

∂xsh,k

xsh,k
E[nsh]

= (1− Psh)βk. (11)

Owing to the properties of the probability Psh ∈ [0, 1], this is not larger than (10).

The different elasticities are a result of polar assumptions as regards the degree of similar-
ity between different locations. In the Poisson count regression, the hosts are thought to

2A textbook discussion and derivation of the Poisson count regression with panel data can be found e.g.
in Winkelmann (2008, ch.7.2) or Cameron and Trivedi (1998, ch.9).
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represent alternatives that are dissimilar, or segmented, in the sense that a changing value
of the variable xsh,k affects the conditions in h, but not elsewhere in h′. The absence of
such spillovers manifests, statistically, in a cross-elasticity that is equal to zero by defini-
tion.3 Borrowing the words of SB, this implies that the Poisson count regression reflects a
”positive sum world” where e.g. improving conditions in h can result in an expansion of the
total number of location choices N =

∑
s

∑
h nsh. Conversely, the conditional logit model

is a ”zero sum world” where the total number of location choices is fixed at N . When more
firms choose h, this comes entirely at the expense of competing alternatives within the set
H of locations that are deemed to be similar.4

It is not always appropriate to restrict the alternative of locating in h to locating elsewhere
as in the conditional logit model, or ignoring the role of alternatives altogether. Consider
for example the case of FDI. As depicted in a schematic manner in figure 1, a firm can either
decide to go multinational indexed with m = ø and, contingent on this, choose a host h to
locate a subsidiary plant. Alternatively, as depicted by the branch on the left, a firm can
also invest in a generic outside option m = o, which comprises only one elemental choice,
labelled with h = 0, encompassing contingencies such as remaining inactive, exporting,
installing capacity in the home country, etc.

FIGURE 1 HERE

Accounting explicitly for an outside option has other benefits. In particular, SB show that
the extension of the conditional logit model with a fixed outside option yields a version of
the nested logit model that covers the intermediate cases between the zero and positive-sum
world discussed above. The next section endeavours to develop this model within the current
context.

3 Location Choice in a Nested Logit Model

Following SB, and as depicted in figure 1, consider a scenario where the outside option
h = 0 is fixed in the sense of not depending on the choice-specific variables xsh. Hence, the
corresponding expected profit is given by

E[Πi,s0] = δs + εi,s0. (12)

Similar to (1), a firm is again assumed to pursue the outside option h = 0 if the resulting
profit is expected to outperform the alternative of placing economic activities in a given
location h > 0, with the corresponding decision being denoted by

mi,sh =

{
0 E[Πi,s0] > E[Πi,sh] ∀ h > 0
1 otherwise.

(13)

The nested logit model entertains the idea that the elemental options can be summarised into
different groups consisting, here, of the outside option h = 0 and the location choice h > 0,
whereby the elemental options are supposed to be more similar within than between these
different ”nests”. To embed the approach of SB within the present context, the following
provides a synoptic derivation of the choice probabilities of a nested logit model reflecting
the structure of figure 1.5

3Deriving (5) with respect to x′sh yields ζpcsh,k =
∂E[ñ

pc
sh

]

∂xsh′k

xsh′k
E[ñ

pc
sh

]
= 0.

4Statistically, this manifests in a cross-elasticity of ζclsh,k = −Pshβk. Summing over all options H yields

(1−Psh)βk − (H − 1)Pshβk = (1−HPsh)βk = 0 and uncovers the zero-sum property in the sense that any
”gain” of choices h is exactly offset by the ”losses” in the other options.

5For a textbook discussion of the nested logit model see Hensher et al. (2005, ch.13-14).
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Consider first the basic location choice when a firm i does not want to pursue the outside
option (where mi,sh = 1). Recall that the expected profits of (2) guiding the location choice
have a stochastic component to account for unobservable factors. However, in contrast to
the conditional logit model, εi,sh|ø conditions here on the firm not pursuing the outside
option before making elemental decisions about the host h > 0. The stochastic component
εi,sh|ø is again assumed to be Gumbel-distributed with a location parameter normalised to
0, but a variable scale parameter ςøs > 0 reflecting the similarity of the elemental options
within the group. Now, the conditional probability that a location h > 0 is chosen is given
by

Psh|ø =
exp

(
x

′

shβς
ø
s

)∑S
s=1

∑H
h=1 exp

(
x

′
shβς

ø
s

) . (14)

This differs from (3) only with respect to the scale parameter ςøs , which was normalised to
1 in the conditional logit model (see section 2). Turning to the group stage, the probability
Pøs that the outside option is not pursued depends again on a Gumbel distribution with
scale parameter λø

s. From this, the probability Pøs is given by

Pøs =

[∑S
s=1

∑H
h=1 exp

(
x

′

shβς
ø
s

)]λø
s
ςøs

[
exp

(
δsςos

)]λos
+

[∑S
s=1

∑H
h=1 exp

(
x

′
shβς

ø
s

)]λø
s
ςøs

, (15)

where the first term of the denominator accounts for the probability contribution of the
outside option (see below). The extent to which the options in the location choice group
differ manifests itself in the dissimilarity parameter6 (λø

s/ς
ø
s ) ∈ [0, 1] which weights the

probability contribution of E[Nø] =
∑S
s=1

∑H
h=1 exp(x′shβς

ø
s ) and is called ”inclusive value”

since it connects the elemental location choices of (14) with the group choice stage of (15).
It can be shown that

(λø
s/ς

ø
s ) =

√
1− ρø

s (16)

where ρø
s ∈ [0, 1] is the correlation between the stochastic components εi,sh|ø pertaining to the

profits from investing in different locations.7 Jointly, (14) and (15) define the unconditional
probability of locating economic activities in h > 0, that is

Psh = Pøs × Psh|ø =

exp
(
x

′

shβς
ø
s

)[∑S
s=1

∑H
h=1 exp

(
x

′

shβς
ø
s

)](λø
s
ςøs
−1
)

[
exp

(
δsςos

)]λos
+

[∑S
s=1

∑H
h=1 exp

(
x

′
shβς

ø
s

)]λø
s
ςøs

. (17)

Consider now the fixed outside option o that represents a degenerated nest in the sense of
offering only one basic ”choice” with h = 0. As discussed in Hunt (2000), in this case, the
distinction between unconditional and conditional probabilities is irrelevant, as Ps0|o = 1
and Ps0 = Pos × Ps0|o. Since Pos = 1 − Pøs for the present binary choice with Pøs defined
in (15), the probability of choosing the outside option is given by

Pos = Ps0 =
exp

(
δsς

o
s

)λos[
exp

(
δsςos

)]λos
+

[∑S
s=1

∑H
h=1 exp

(
x

′
shβς

ø
s

)]λø
s
ςøs

. (18)

6Sometimes this is also referred to as inclusive value parameter or log-sum coefficient.
7A derivation of this result can be found in Hunt (2000, p.98).
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The coefficients β can be estimated by means of maximum likelihood from the joint prob-
abilities (17) and (18) across observed firms i. However, empirically, only the correlation
ρø
s can be estimated from the data, but not the scale parameters λø

s and ςøs (Hunt, 2000;
Ben-Aktiva and Lerman, 1985; Hensher et al., 2005, ch.13). In essence, this represents an
over-identification problem that necessitates some normalisation. Usually, this involves set-
ting some scale parameters at the group or basic choice level to 1 or 0. SB (p.217) set ςøs = 1,
ςos = 1, and λos = 1 wherefore the probability of investing in the fixed outside option h = 0
according to (17) or of choosing location h > 0 according to (18) becomes

Psh =

exp
(
x

′

shβ
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λø

s−1)

exp
(
δs
)

+

[∑S
s=1

∑H
h=1 exp

(
x

′
shβ
)]λø

s
=

exp(x
′

shβ)(E[Nø])(λø
s−1)

exp(δs) + (E[Nø])λ
ø
s

(19)

P0s =
exp

(
δs
)

exp
(
δs
)

+

[∑S
s=1

∑H
h=1 exp

(
x

′
shβ
)]λø

s
=

exp(δs)

exp(δs) + (E[Nø])λ
ø
s

(20)

where E[Nø] =
∑S
s=1

∑H
h=1 exp(x

′

shβ) is the inclusive value when imposing the above men-
tioned normalisation. Then, for firms domiciled in s, denoting the variable counting the
number of times that the outside option has been chosen with nos and the number of times
where this is not the case with nøs, the concentrated log-likelihood function of the nested
logit model with a fixed outside option, as derived in Appendix A.3 of SB, is given by

lnLnl(β) =

S∑
s=1

{ H∑
h=1

nshx
′

shβ −
H∑
h=1

[
nsh ln

H∑
h=1

exp
(
x

′

shβ
)]}

+ constant. (21)

Again, this differs from the Poisson count regression and the conditional logit model only
up to a constant and hence yields identical estimates for the coefficients β. Furthermore,
according to SB (2011, p.217), the elasticity of the nested logit model is given by

ηsh,k =
∂E[nsh]

∂xsh,k
= [1− Psh|ø(1− λø

sPs0)]βk, (22)

which coincides with the basic conditional logit model when λø
s = 0 and with the basic

Poisson count regression when λø
s = 1 and Ps0 = 1.

4 A Choice Consistent Normalisation

Though adding a fixed outside option leads to a location choice model encompassing the
Poisson count and the conditional logit framework, the nested logit approach of section 3
suffers from several drawbacks.

Firstly, the normalisation of the scale parameters λ and ς is a critical step in the sense of
leading to different versions of the nested logit model with different results and elasticities
(Hunt, 2000; Hensher and Greene, 2005). Arguably, this aspect is often neglected in applied
work (Louviere et al., 2000; Hensher et al., 2005, p.538). To avoid ambiguities, Koppelman
and Wen (1998) suggest that the normalisation should be consistent with some plausible
principles of choice theory. For example, since adding the same constant ∆ to all profits
of (2) and the outside option (12) would not change the ranking of the elemental options,
a theoretically consistent nested logit model should be invariant to such a transformation.
However, appendix A shows that the normalisation underlying (19) and (20) does not fulfill
this property.

Secondly, the scale parameter λs does not appear in the concentrated log likelihood
function (21) and, under the normalisation imposed in section 3, the maximum likelihood
estimate for δs and λs appear in the same first order condition
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exp(δs) =
nos
nøs

[ H∑
h=1

exp
(
x

′

shβ
)]λs

(23)

and hence cannot be separately identified (SB, 2011, p.217).

We address these caveats by considering an alternative, choice consistent normalisation:

Proposition 1 Setting λos = λø
s = λs, ς

ø
s = 1, and ςos = 0 represents a normalisation that

is consistent with choice theory in the sense that adding a constant ∆ to the profits (2) and
(12) that guide the elemental choices does not change the choice outcome.

PROOF: Appendix A.

With the normalisation of proposition 1, the probability of opting for the outside option
according to (17), or of choosing location h > 0 according to (18) becomes

Psh =

exp
(
x

′

shβ
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)

1 +

[∑S
s=1

∑H
h=1 exp

(
x

′
shβ
)]λs =

(E[Nø])(λs−1)

1 + (E[Nf ])λs
exp

(
x

′

shβ
)

(24)

Ps0 =
1

1 +

[∑S
s=1

∑H
h=1 exp

(
x

′
shβ
)]λs =

1

1 + (E[Nø])λs
, (25)

Proposition 1 implies that exp(δsς
o
s )λ

o
s = exp(0)λs = 1 and, hence, normalises to 1 the

contribution of the outside option.8 Intuitively, this is not problematic since the introduction
of the scale parameter λs to the expected number of location choices E[Nø]λs , which appears
in the denominator of (24) and (25), already weights the relative importance between the
outside option and the location choices. Also, the normalisation of proposition 1 leaves the
likelihood function (21) intact since the parameter δs does not appear in it.

When ςøs = 1, according to (16), the scale parameter maps into the correlation between the
stochastic component εi,sh of the elemental options, that is λs =

√
1− ρs, and hence reflects

directly the degree of dissimilarity between the different locations. Recall that ρs = 0 means
that stochastic events are entirely uncorrelated and the different locations are completely
segmented, which is consistent with the basic Poisson count regression with dissimilarity
parameter λs = 1. Conversely, a dissimilarity parameter of λs = 0, which implies that
ρs = 1, means that the locations are perfectly integrated, which is consistent with the
conditional logit model.

Though with proposition 1, which implies that exp(δsς
o
s )λ

o
s = exp(0)λs = 1, the dissimilarity

parameter λs could be estimated from (23), this would still necessitate information about the
number of times nos that the outside option has been chosen. Considering again the example
of FDI, this is not straightforward since contingencies such as abandoning an investment
project or remaining inactive are hard to observe. However, the next section suggests that
aggregating location choices provides a possible remedy, when the outside option is (partly)
unobservable.

8A similar normalisation arises with the Logit model for binary choices where the probability of choosing

alternative 1 and 2 are, respectively, exp(x
′
β)/(1 + exp(x

′
β)) and 1/(1 + exp(x

′
β)) meaning that the weight

of one alternative has also been normalised to 1.
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5 Introducing λs into the Poisson Count Framework

Similar to the basic models of section 2, the following endeavours to establish the link
between the nested logit model, where individual location choices are the dependent variable,
and a corresponding Poisson count regression, where the aggregate number of such choices
is the dependent variable, when adding a fixed outside option to the choice set. Following
the steps of section 2 to obtain a model with count variable nsh as dependent variable,
multiplying the nested logit probability Psh of (24) with the expected total number of firms
E[N ] = 1 + (E[Nø])λs of the denominator yields

E[ñpcush ] = PshE[N ] = (E[Nø])(λs−1)︸ ︷︷ ︸
=αs

exp
(
x

′

shβ
)

= αsE[npcsh], (26)

which has a similar structure to (5), but the group effect that can be estimated from (8) has
been parameterised by αs = E[Nø](λs−1). When λs = 1, we have E[Nø](λs−1) = E[Nø]0 = 1
and the basic Poisson count regression with completely dissimilar elemental options arises.
Then, the inclusion of an outside option is irrelevant, which manifests itself in the fact that
E[ñpcush ] coincides with E[npcsh]. Conversely, when λs < 1, the elemental options are to some
degree similar and, the more this is the case, the more the expected number E[ñpcush ] of
location choices differ from E[nsh] of a basic count process.

Solving αs = E[Nø](λs−1) for the dissimilarity parameter yields

λ̂s =
ln(E[Nø]αs)

ln(E[Nø])
. (27)

Recall from the discussion in section 3 that λs can adopt values between 0 and 1. Then,
λs = 1, which is consistent with the basic Poisson count regression, arises when αs = 1.
Conversely, λs = 0, which is consistent with the basic conditional logit model, requires
that αs = 1/E[Nø] which is close to 0 when a large number E[Nø] of location choices
are expected in the data. According to (8), when 0 < αs ≤ 1, the count data exhibit
underreporting in the sense that the observed number of location choices ñpcush is lower
than would be expected from a basic Poisson count process with npcsh. Unless αs = 1,
some firms will indeed end up choosing the (unobserved) outside option, which reduces the
number of location choices actually observed. Hence, with aggregate counts, a high degree of
underreporting can be interpreted as evidence of a higher importance of the outside option.
Note that the establishment of this nexus between the nested logit model and the Poisson
count regression of (5) necessitates panel data to obtain the group effect (8) and compute
the dissimilarity parameter λs in (27).

Finally, as derived in appendix B, the elasticity of ñpcush with respect to changes in xsh,k with
coefficient βk now equals

ηpcush,k = [1− Psh|ø(1− λs)]βk. (28)

This is again entirely consistent with the framework above in the sense that λs = 1 returns
the elasticity of the basic Poisson count regression given by (10) and λs = 0 is the elasticity
of the conditional logit model as given by (11). However, empirically, the dissimilarity
parameter can adopt any value between these polar cases. Also, evaluating (28) yields
ηpcush,k = λsβk + (1−λs)(1−Psh|ø)βk = λsη

pc
sh,k + (1−λs)ηclsh,k, meaning that the elasticity of

the Poisson count regression with a fixed outside option is a with λs weighted linear average
between the basic Poisson count regression and the conditional logit model. This reflects
a similar condition for the nested logit model that features in SB (2011,pp.217ff.). In sum,
the introduction of an outside option leads to a more nuanced picture when calculating
the resulting elasticities since the value of (28) depends on (i.) the coefficient βk which
determines the upper bound of the elasticity, (ii.) the probability Psh|ø that a host h can
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attract a firm from elsewhere when changing the value of xsh,k, and (iii.) the extent to
which the locations are similar and hence compete to attract firms.

6 Empirical Application: Cross-Border Acquisitions

This section endeavours to illustrate the method from section 5 to calculate the dissimilarity
parameter λs from the data with an application drawing on the location choices revealed
when firms acquire a subsidiary plant abroad. Such CBAs are comprehensively recorded in
the SDC Platinum database of Thomson Reuters and have been used elsewhere to study
the determinants of FDI within the Poisson count framework (Kessing et al., 2007; Herger
et al., 2008; Hijzen et al., 2008; Coerdacier et al., 2009) and the conditional logit framework
(Herger et al., 2011). To focus on a group, or nest, with relatively similar locations, the
CBA deals between 25 EU countries during the 2005 to 2009 period are used. In total, the
sample contains 8,302 deals with the top panel of Table 1 recording the count (number of
CBAs) between the source, reported in rows, and host, reported in columns.

TABLE 1 HERE

Following the literature on the determinants of FDI, the profit function (2) guiding the loca-
tion choice is fitted to a gravity equation with the list of dependent variables x

′

sh containing
real GDP, the WAGE level, the distance (DIST) between the capital cities, a dummy variable
for countries sharing a common BORDER, a common language dummy variable (LANG),
a measure for investment freedom (INVFR), an index on trade freedom (TRADEFR), a
corruption index (CORRUPT), and a measure for the effective average taxes levied on cor-
porations (TAX). Table 3 of appendix C contains a detailed description and the sources of
the variables. Except for the dummy variables, the regressors have been transformed into
logarithms and averaged over the 5 years under consideration. The resulting coefficients,
calculated from a panel Poisson count regression with group effects αs and with the 600 (25
source × 24 hosts) observations of nsh in the top panel of Table 1 as dependent variable,
are given by

#CBAsh = αs ∗ exp

(
0.74
(0.02)

[0.02]

GDP − 1.04
(0.06)

[0.06]

WAGE − 0.58
(0.02)

[0.02]

DIST + 0.51
(0.03)

[0.03]

BORDER+ 0.67
(0.04)

[0.04]

LANG

+ 0.60
(0.10)

[0.10]

INV FR− 3.89
(0.87)

[0.88]

TRADEFR− 1.37
(0.10)

[0.10]

CORRUPT − 0.40
(0.10)

[0.10]

TAX

)
, (29)

whereby standard deviations are reported below the coefficients in (round) parentheses.
Note that all coefficients are significant and shape up to the economic priors with more CBAs
occurring with economically large hosts that have low wages, are geographically close to the
source, have a common border or language, offer a high degree of investment freedom, are
difficult to access by trade, and have low levels of corruption and corporate taxes. Recalling
the discussion in section 2, a conditional logit model employing location choices li,sh revealed
in individual CBA deals yields the same coefficient estimates. However, in practice, it is more
burdensome to handle such a location choice model since it involves 199,248 observations
(24 possible choices × 8,302 deals) rather than the 600 when using aggregated count data.
The standard deviations of the conditional logit model are reported in [square] brackets in
(29) and barely differ, here, from those of the Poisson count process and do not overturn
the significance of any of the coefficient estimates. Conversely, since (7) contains a constant
that does not appear in (4), the value of the log likelihood function of the Poisson count
regression, given by -2,139, is much less negative than the value of the conditional logit
model given by -21,741.

The estimated group effects α̂s are reported in Table 2. Note that the values of α̂s are all
below 1/3 which suggests that the number of observed CBA deals is substantially lower than

11



would be expected from a basic Poisson count regression without adjusting for the group
effect of (8). The relatively low values of αs suggest that, within the current sample of EU
countries, firms often seem to favour the generic outside option.

TABLE 2 HERE

From the group effects α̂s of Table 2, the dissimilarity parameter λs can be computed from
(27), whereby, from the estimates of (29), E[Nø] =

∑
s

∑
hE[nsh] =

∑
s

∑
h exp(x′shβ) =

132, 848. In general, for the current example, the values of the dissimilarity parameters are
closer to the bound with λs = 1 that reflects the ”positive sum world” of the Poisson count
regression. This would suggest that additional CBAs with a given host country do often not
come at the expense of alternative locations. However, some differences arise between the
countries. What may be worth noting is that the dissimilarity parameter tends to be lower
for the Eastern European countries that have only recently joined the EU. Perhaps, these
countries have attracted a relatively large proportion of firms trying to outsource production
stages to low wage countries, which could be a type of investment that is subject to more
rivalry between locations and is hence closer to the ”zero sum world” of the conditional logit
model.

The value of the dissimilarity parameter also has implications for the calculation of elastic-
ities. To see this, recall, from (10), that the coefficient estimates βk of (29) represent the
upper bound of the absolute value of an elasticity ηpck reflecting the positive-sum world inher-
ent in the Poisson count regression. Conversely, in the zero-sum world of the conditional logit
model, which determines the lower bound ηclsh,k = (1−Psh)βk of (11), the elasticity depends
also on the probability Psh that a firm domiciled in s invests in h. When the coefficient βk is
low, such as the impact of taxation in (29) with an inelastic value of -0.40, or the probability
Psh is modest, which is the case here for many country pairs as reported in the lower panel
of Table 1, the range between these bounds is small. It may be intuitive that distinguishing
between the zero and positive-sum world might be irrelevant when a variable is, statistically
and economically, insignificant or a location is unlikely to attract a firm anyway, implying
that changes of the local conditions have negligible spillover effects on to other locations.
Conversely, when a variable has a potentially large impact, such as corruption which enters
into (29) with a coefficient of −1.39, and the probability of investment between s and h is
large, such as from Ireland into the UK where Psh = 0.49, the lower bound would e.g. be
ηclsh,k = (1 − 0.49)(−1.39) = −0.71 meaning about half the maximal value. Then, it might
be important to pin down the position of the intermediate elasticity of (28). Considering
again the case of corruption and using the range arising for a CBA from Ireland into the UK,
with the relevant dissimilarity parameter being λs = 0.74 according to Table 2, applying
equation (28) yields an elasticity of ηpcush,k = 0.74× (−1.37) + (1− 0.74)× (−0.71) = −1.20.
Hence, in this case, the elasticity would be closer to the upper bound.

Though the example presented in this section yields some intuitive results, our aim is merely
to illustrate how to calculate the dissimilarity parameter λs from the data with the method
from section 5. Of course, variables other than those in (29) have appeared in the literature
and considering them might affect the results. In any case, considering different location
choice models and including the contingency of a fixed outside option leads to a more versatile
picture e.g. in terms of an elasticity whose value is not uniform across locations, but depends
also on the conditions elsewhere or on the degree of similarity between competing locations.

7 Summary and Conclusion

Econometric models employing discrete location choices as the dependent variable have
become a popular framework for uncovering how economic, political, and other determinants
affect the geographical distribution of economic activities. Specifically, the econometric
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analysis of location choices has taken the form of a conditional logit model, which connects
the determinants with individual decisions to locate economic activities in a given place,
or a Poisson regression aggregating such location choices into a count variable. Though
they yield identical coefficient estimates, the conditional logit model and the Poisson count
regression reflect polar cases when it comes to the interpretation of the results. Above
all, in the Poisson count regression, the locations are thought to be completely dissimilar
options whilst in the conditional logit model they are completely similar. Previous work by
Schmidheiny and Brülhart (2011) suggests that these polar cases can be reconciled by adding
a fixed outside option and transforming the conditional into a nested logit model. This gives
rise to a dissimilarity parameter λs whose value covers the continuum between the Poisson
count regression and the conditional logit model. However, outside options that cannot be
observed as well as data handling issues when there are a large number observations and
locations, can inhibit the empirical estimation of the dissimilarity parameter. For the case
of panel data, this paper has shown that the outside option can also be introduced into the
Poisson count framework, where a group effect accounts for the underrecording of location
choices and provides a way to uncover the value of the dissimilarity parameter. The main
advantages of using such a Poisson count framework are that (1.) location choices taken
for example by firms are often easier to observe than, say, the value they invest and (2.)
aggregating the location choices into a count variable can lead to a dramatic reduction in
the number of observations required for estimation.
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A Proof Proposition 1

In a choice consistent nested logit model, adding a constant ∆ to all profits (2) and (12), that
is Π∗sh = Πsh + ∆, should not change the probabilities Ps0 and Psh = PøsPsh|ø of investing,
respectively, in the outside option h = 0 or in location h > 0. The following demonstrates
that the normalisation of proposition 1 fulfills this property whilst this is not the case for
the normalisation of SB.

Normalisation of Proposition 1 (λos = λø
s = λs and ςøs = 1 and ςos = 0)

Consider first Psh = PøsPsh|ø of (24).

Psh =
exp

(
x

′

shβ
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)

1 +
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs

=
exp

(
x

′

shβ
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)

[
exp(0)

]λs
+
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs

Adding ∆ yields

P ∗sh =
exp

(
x

′

shβ + ∆
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ + ∆
)](λs−1)

[
exp

(
∆
)]λs

+
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ + ∆

)]λs .

Now

P ∗sh =
exp(∆) exp

(
x

′

shβ
)[

exp(∆)
∑S
s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)

[
exp(∆)

]λs
+
[

exp(∆)
∑S
s=1

∑H
h=1 exp

(
x

′
shβ
)]λs

=
exp(∆) exp

(
x

′

shβ
)[

exp(∆)
](λs−1)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)

[
exp(∆)

]λs
+
[

exp(∆)
]λs[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs

=

[
exp(∆)

]λs{
exp

(
x

′

shβ
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)}

[
exp(∆)

]λs{
1 +

[∑S
s=1

∑H
h=1 exp

(
x

′
shβ
)]λs}

=
exp

(
x

′

shβ
)[∑S

s=1

∑H
h=1 exp

(
x

′

shβ
)](λs−1)

1 +
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs = Psh

and P ∗sh equals Psh of (24). Likewise, consider Ps0 of (25)

Ps0 =
1

1 +
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs =

[exp(0)]λs

[exp(0)]λs +
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs .
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Adding ∆ yields

P ∗s0 =
[exp(∆)]λs

[exp(∆)]λs +
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ + ∆

)]λs
=

[exp(∆)]λs

[exp(∆)]λs +
{[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]

exp(∆)
}λs

=
[exp(∆)]λs

[exp(∆)]λs + [exp(∆)]λs
{[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]}λs

=
1

1 +
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]λs = Ps0

which is equal to Ps0 of (25). Hence, the normalisation of Proposition 1 is choice consistent.

Schmidheiny and Brühlhart Normalisation (ςøs = 1, ςos = 1, and λos = 1)

Adding ∆ to Ps0 of (20) yields

P ∗s0 =
exp(δs + ∆)[

exp
(
δs + ∆

)]
+
[∑S

s=1

∑H
h=1 exp

(
x

′
shβ + ∆

)]λø
s
.

and

P ∗s0 =
exp(δs) exp(∆)

exp(δs) exp(∆) +
{[∑S

s=1

∑H
h=1 exp

(
x

′
shβ
)]

exp(∆)
}λø

s

=
exp(δs) exp(∆)

exp(δs) exp(∆) + exp(∆)λ
ø
s

[(∑S
s=1

∑H
h=1 exp(x

′
shβ)

)]λø
s
6= Ps0

Hence the normalisation of SB is choice inconsistent.

B Derivation of Elasticity

With E[ñpcush ] = (E[Nø])(λs−1) exp(x
′

shβ) of (26), the elasticity with respect to a (logarith-
mically transformed) variable xsh,k is

ηpcush =
∂E[ñpcush ]

∂xsh,k

xsh,k

E[ñpcush ]

=

[
(λs − 1)(E[Nø])(λs−2) exp(.)

βk

xsh,k
exp(.) + E[Nø](λs−1) exp(.)

βk

xsh,k

]
xsh,k

E[Nø](λs−1) exp(.)
.

Cancelling terms yields

ηpcush = (λs − 1) (E[Nø])−1 exp(x
′

shβ)︸ ︷︷ ︸
=Psh|ø according to (14)

βk + βk

= [1 + (λs − 1)Psh|ø]βk = [1− (1− λs)Psh|ø]βk.
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C Data Appendix

Description of the Data Set

Variable Unit Description Source

Dependent Variables:

li,sh Nominal For each cross-border acquisition i from source s, this
indicates whether host h has been chosen, in which case
li,sh = 1, or another location has been chosen as host,
in which case li,sh = 0.

Compiled from SDC
Platinum of Thom-
son Financial.

nsh Count Number of cross-border acquisition deals between
source s and host h during 2005 to 2009 period.

Compiled from SDC
Platinum of Thom-
son Financial.

Independent Variables:

Common border
(BORDER)

Nominal Dummy variable for countries sharing a common land
border.

Own calculations.

Corruption
(CORRUPT)

Index Corruption index on a scale from 10 to 90. Original
values have been reversed such that higher values mean
more corruption.

Heritage Founda-
tion.

Distance (DIST) 1,000
Km.

Great circular distance between capital city of the
source and host.

Own calculations.

Gross Domestic
Product (GDP)

Bn.
US$

Real gross domestic product in US$ with base year 2000
of the host h.

World Development
Indicators.

Investment Free-
dom (INVFR)

Index Index of freedom of investment referring to whether
there is an FDI code that defines the country’s invest-
ment laws and procedures; whether the government en-
courages FDI through fair and equitable treatment of
investors; whether there are restrictions on access to
foreign exchange; whether foreign firms are treated the
same as domestic firms under the law; whether the gov-
ernment imposes restrictions on payments, transfers,
and capital transactions; and whether specific indus-
tries are closed to FDI.

Heritage Founda-
tion.

Common Lan-
guage (LANG)

Nominal Dummy variable for countries sharing a common official
language.

Compiled from CIA
World Factbook.

Corporate Tax
(TAX)

Per
cent

Effective average tax rate (EATR) on corporate income
on outbound FDI between the source and host (overall
case). The EATR is the proportion of profit from an
investment taken in tax accounting for capital depreci-
ation, tax allowances, withholding taxes, and interna-
tional tax relief.

Devereux et al.
(2009).

Trade Freedom
(TRADEFR)

Index Index of freedom of international trade (tariff and non-
tariff barriers) on a scale from 10 to 90.

Heritage Founda-
tion.

Wage (WAGE) Index
(Zurich
=100)

Wage level in the host. Wages are measured by an index
referring to the hourly gross income of 13 comparable
professions (product managers, department heads, engi-
neers, primary school teachers, bus drivers, car mechan-
ics, building labourers, industrial workers, cooks, bank
credit officers, personal assistants, sales assistants, fac-
tory workers) as paid in the capital city or the financial
centre of a country.

UBS, Prices and
Earnings.
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D Figures

Figure 1: Location Choice and Outside Options
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Table 2: Group Effects αs and Similarity Parameter

Source αs λs Source αs λs
(1) (2) (3) (4)

AUT 0.050 0.75 IRL 0.047 0.74
BEL 0.035 0.72 ITA 0.098 0.80
BGR 0.002 0.49 LTU 0.005 0.55
CZE 0.010 0.61 LUX 0.025 0.69
DEU 0.199 0.86 LVA 0.003 0.52
DNK 0.063 0.77 NLD 0.144 0.84
ESP 0.108 0.81 POL 0.017 0.66
EST 0.013 0.63 PRT 0.030 0.70
FIN 0.074 0.78 ROM 0.003 0.51
FRA 0.179 0.85 SVK 0.003 0.49
GBR 0.311 0.90 SVN 0.002 0.48
GRC 0.022 0.68 SWE 0.174 0.85
HUN 0.007 0.57
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