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Abstract

The analysis of large panel data sets (with N variables) involves methods of dimen-
sion reduction and optimal information extraction. Dimension reduction is usually
achieved by extracting the common variation in the data into few factors (k, where
k ≪ N). In the present project, factors are estimated within a state space frame-
work. To obtain a parsimonious representation, the N × k factor loading matrix
is estimated under a sparse prior, which assumes that either many zeros may be
present in each column of the matrix, or many rows may contain zeros. The sig-
nificant factor loadings in columns define the variables driven by specific factors
and offer an explicit interpretation of the factors. Zeros in rows indicate irrelevant
variables which do not add much information to the inference. The contribution
includes a new way of identification which is independent of variable ordering and
which is based on semi-orthogonal loadings.
JEL classification: C11,C32
Key words: Dynamic factor model, identification, sparsity.

1 Introduction

Sparse factor models greatly condense information in large cross-section or panel data sets.
So far they have particularly been used in gene expression analysis, where only few out of
potentially tens of thousands of genes may be responsible for some physiological outcome
of interest. Individual gene expressions may thus be influenced by common biological
factors, each of which involves only a subgroup of genes. A sparse loading matrix arises
naturally in this context, in which many zero rows indicate that only a small share of
all genes determine the biological factors of interest and zeros in columns indicate that
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genes usually determine one or only a few of the biological factors (West 2003, Lucas
et al. 2006). This framework is also of interest for economic analysis. In recent times the
practice of including as much data as available or using the highest possible disaggregation
level in sectoral analysis has become standard in econometric analysis, irrespectively of
whether the focus lies on economic stance evaluation or forecasting (Forni et al. 2000,
Stock and Watson 2002).

Specifying a sparse factor model for large economic datasets brings about valuable advan-
tages. First, the inference on the factor loading matrix allows an explicit interpretation
of the factors. Given that series might be affected by only less than all estimated factors,
those with non-zero loadings are those definitively relevant for the interpretation of a
factor. Second, the issue of selecting the variables containing most information on the
common factors driving the variables is simultaneously addressed while estimating the
model. The factor loadings of irrelevant variables are estimated to be zero, yielding rows
of zeros in the factor loading matrix. Third, if the focus lies on forecasting, the estimate
of the sparse factor model provides evidence on whether the panel contains relevant in-
formation for a variable of interest, and specifically which variables should be retained to
compute the forecast.

We work within a Bayesian framework and pursue the parametric approach of Lucas et al.
(2006). We extend the specification to a dynamic factor model with sparse factor loading
matrix. Sparsity is induced by implementing a two-layer prior, each layer of which is a
mixture of a Dirac delta function with infinite mass at zero and of, respectively, a normal
and a Beta distribution for the factor loadings and the variable-specific probability of
a non-zero loading. The posterior update then yields either variable and factor specific
zero loadings or loadings shifted away from zero. Another avenue is proposed in Yoshida
and West (2010) who estimate the loadings by solving an eigenvalue problem taking into
account the sparse structure of the covariance matrix of the data.

There exist alternative approaches to implement sparsity or near-sparsity in the loading
matrix. In the frequentist framework, one might use a sparse eigenvalue decomposition
to induce sparsity (Zou et al. 2006). Eickmeier (2005) used the varimax approach of
Kaiser (1958) to obtain an interpretation of the factors. After estimating the factors by
principal components, the procedure looks for a rotation yielding a maximum correlation
dispersion among the columns of the loading matrix. In the Bayesian framework, Bhat-
tacharya and Dunson (2011) use a prior which increasingly shrinks the loadings towards
zero as the number of estimated factors increases. While sampling, the number of factors
is estimated by setting those loadings column-wise to zero which lie within a pre-defined
threshold interval around zero. In the present paper, we estimate a model that explic-
itly includes sparsity. As already mentioned, the explicit sparse specification allows to
select the relevant variables simultaneously while estimating the model. Thus, we also
circumvent the usual two-step or ad hoc procedures which are followed traditionally to
address the issue of variable selection (see e.g. Forni et al. 2001, Bai and Ng 2008). The
usefulness of sparse priors to find relevant variables in factor models is the focus of a
companion paper, see Kaufmann and Schumacher (2012). Here, we will primarily deal
with identification and estimation issues.

In gene expression analysis, a high degree of sparsity is usually present and already de-
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livers a unique factor identification. In economic data, the degree of sparsity is uncertain
and might obviously be lower than in other disciplines. Therefore, we deal with the
identification issue and propose an alternative to the traditional ones used in the litera-
ture. Geweke and Zhou (1996) and Aguilar and West (2000) work with restrictions on
the upper diagonal of the factor loading matrix. Frühwirth-Schnatter and Lopes (2010)
implement a generalized upper-diagonal zero loading matrix, in which the first non-zero
loading of each factor lies on a higher row number than the ones for all previously ranked
factors. Carvalho et al. (2008) pursue a heuristic approach after having estimated a
“core” factor model for the variables of interest. Subsequently, variables are added which
are perceived to highly correlate with the core model. Those are retained which correlate,
and the “founder” of the potential additional factor is determined. Finally, Bernanke,
Boivin, and Eliasz (2005) work with a restricted upper square loading matrix to identify
a unique rotation of the factors. In all works but Frühwirth-Schnatter and Lopes (2010)
and Carvalho et al. (2008), variable ordering is not perceived as an issue. Nevertheless,
it is conceivable that the first ranked variables in the panel1, the factor loadings of which
are restricted and therefore are relevant for factor identification, might in fact be the rel-
evant ones for only fewer than all assumed factors. It is conceivable that the first ranked
variables might not contain any information at all about the factors. If N , the number
of included variables is large, the introduced bias in the estimated k, k << N , factors
might be small, if the remaining N − k variables contain enough information about the
common factors. Nevertheless, the bias is reduced if the factor founders are ranked first
(Lucas et al. 2006, Frühwirth-Schnatter and Lopes 2010, Bai and Ng 2011).

We propose an identification scheme which is independent of variable ordering. The
Markov chain Monte Carlo (MCMC) sampling schemes we design switches between two
observationally equivalent factor representations. First, the N × k sparse factor loading
matrix λ∗ is estimated freely, under a k × k identity covariance matrix of the factor
innovations as identifying restriction, Ση∗ = I. Second, the factors are identified and
sampled under the restriction of a semi-orthogonal factor loading matrix λ, λ′λ = D,
where D is diagonal with elements ordered in descending magnitude. The factor loading
matrix λ is obtained from the eigenvalue decomposition of λ∗′λ∗, using the eigenvectors
H corresponding to the eigenvalues arranged in descending order of magnitude, λ = λ∗H.
Given the sampled factors we switch back to the first step by transforming the system
again to λ∗ = λH ′, f ∗

t = Hft. For unrestricted static factor models, Bayesian estimation
with order-independent identification has been derived in Chan et al. (2013).

The sampler formally identifies the factor model up to sign switching and up to trivial
rotation, i.e. up to permutations of columns in the loading matrix together with cor-
responding factor permutation. There are two ways to obtain a unique ordering of the
factors. If the columns of the loading matrix and the factors are permuted randomly while
sampling, the highest (absolutely) correlated factor draws will define the “core” patterns
according to which the draws are then re-ordered in a post-processing step. A second
possibility is to order the factors according to the number of non-zero factor loadings
while sampling. Post-processing of the draws then reduces to checking whether factors

1In panels with economic data, groups of data are usually deliberately ranked. For example, GDP and
its components usually are ranked first, followed by a group of trade variables, then financial variables,
and so on.
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with an equal or similar number of non-zero loadings need additional permutations to
uniquely identify the factors. Finally, overall sign identification is achieved by imposing
the restriction of positive loadings for the majority of non-zero column-specific loading
coefficients.

The paper is organized as follows. The next section presents briefly the model and the
various observationally equivalent representations of it. Section 3 introduces sparsity and
proposes an identification and estimation procedure which is independent of the variable
ordering in the panel. Section 4 presents the Bayesian setup and the prior specification,
in particular the two-layer sparse prior for the factor loading matrix. Section 5 describes
the posterior inference. Exercises with simulated data in section 6 show the usefulness of
the sampler and evaluate the performance of various prior specifications. In particular, we
compare the estimation efficiency gains of using the two-layer prior for the loadings against
using the one-layer and the normal prior. In section 7, we present an application to a large
Swiss data set including 182 macroeconomic and price data series. Section 8 concludes.
The appendix A contains details about the derivation of the posterior distributions.

2 Model specification

Assume Xt to be a N × 1 vector of non-trending series observed in quarter t = 1, . . . , T .
Typically, when N is large, Xt may have a factor representation

Xt = λ∗f ∗
t + ξt

Φ∗(L)f ∗
t = η∗t , η∗t ∼ N (0,Ση∗) (1)

Ψ(L)ξt = εt, εt ∼ N (0,Σε)

where the factor loading matrix λ∗ is N × k. The processes Φ∗(L) and Ψ(L) are of order
p and q, respectively. The common dynamics in the series are captured by the k factors
f ∗
t , where k << N . The vector autoregressive (V AR) process Φ∗(L) is left unrestricted.
However, the factor innovations are assumed to be orthogonal, Ση∗ is diagonal. Given
that the common dynamics are captured by the factors, the process of the idiosyncratic
components ξt are independent of each other. Therefore, the process Ψ(L) and the co-
variance matrix Σε are diagonal, with element ψi(L) and σ2

i , respectively. Finally, the
common and idiosyncratic components are uncorrelated, E (η∗t εt) = 0.

The ∗ indicates that the loading matrix is sparse, i.e. containing (some or many) zeros in
the columns and even rows of zero loadings. The non-zero loadings in columns indicate
the variables on which the factors load. These variables potentially define the factor, i.e.
they potentially assign an interpretation to the factor. For instance, the factor which
loads on many real variables may reflect the business cycle, while another factor which
mainly loads on trade data may reflect external conditions. Rows of zero loadings indicate
variables that are irrelevant for factor estimation. Thus, allowing for explicit zero factor
loadings enables to perform variable selection simultaneously while estimating the factor
model.
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The estimation of the factor structure is based on the covariance structure of the data:

Cov(X) = λ∗Cov(f ∗)λ∗′ + Cov(ξ), (2)

where Cov(f ∗) is non-diagonal given the V AR(p) process and Cov(ξ) is diagonal. The
representation in (1) will still be satisfied for any non-singular matrix H (Lawley and
Maxwell 1971, chapter 2):

Xt = λ∗HH−1f ∗
t +Ψ(L)ξt = λft +Ψ(L)ξt

Φ(L)ft = ηt, ηt ∼ N (0,Ση) (3)

in which Φ(L) is adjusted to Φ(L) = H−1Φ∗(L)H and ηt = H−1η∗t . Therefore, to identify
the model, k2 restrictions are necessary. By setting Ση∗ = I equal to the identity matrix,
we implement k(k + 1)/2 restrictions. A usual approach to implement the remaining
k(k − 1)/2 restrictions is to set to zero the upper-diagonal elements of the leading k × k
submatrix in λ∗. This however needs a procedure to define the k leading relevant variables,
in particular if the loading matrix is sparse (Carvalho et al. 2008, Frühwirth-Schnatter
and Lopes 2010). Here, however, we propose to implement a procedure which identifies
the factors independently of variable ordering. We achieve this by imposing the remaining
restrictions on the vector product of the matrix λ, i.e. implementing λ′λ = D, D being
diagonal with elements arranged in decreasing order of magnitude, while preserving the
identity matrix of the factor innovation covariance matrix Ση = I. See below for further
arguments and the exact implementation.

To obtain a solution to (2), we equate the number of left-hand side equations to the
number of free parameters we want to estimate (p ≥ 2, q ≥ 0):

N(N + 1)/2 = Nk +N +Nq + pk2 + k − k2

s = (1− p)k2 − k(N + 1) +N(N − 2q − 1)/2

For large N , s will usually be positive. In this case, a factor representation usually is
not trivial and the covariance structure of the data, Cov(X) needs to feature some s
constraints for a factor representation to exist, (Anderson and Rubin 1956). The solution
for k under s ≤ 0, in which case a unique factor representation (for s = 0) or a factor
representation with potentially an infinite choice of λ and Cov(ξ) (for s < 0) in general
exists, yields

k ≥
(N + 1)−

√
(N + 1)2 − 2N (1− p) (N − 1− 2q)

2 (1− p)

For large N , the minimum k turns out to be quite large. We reproduce some values for k
for given N , assuming p = q = 2 (see also Anderson and Rubin 1956):

N = 5 10 50 150 300
k = 0 1.9 16.6 53.2 108.2

Given that in general k << N , in the following we proceed by assuming that the covariance
structure Cov(X) allows a factor representation as in (1).
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Assuming λ∗ to be sparse induces zero loadings. If the pattern of estimated zero loadings
is such that it is destroyed by any non-singular transformation of the factors, exclud-
ing trivial column switching, then λ∗ and Cov(ξ) are uniquely determined (Lawley and
Maxwell 1971). In this case, for given k, we interpret the sparse factor model as the most
parsimonious factor representation of the data X.

Finally, note that the representation also covers the case where lagged factors enter the
observation equation in (1) (see also Peña and Poncela 2006). Assume that:

Xt = λ∗λ̃(L)f̃t +Ψ(L)ξt

Φ̃(L)f̃t = ηt, ηt ∼ N (0,Ση) . (4)

The specification in (1) can be recovered with f ∗
t = λ̃(L)f̃t and Φ∗(L) = Φ̃(L)λ̃(L)−1.

3 Sparsity and identification

As shown in the previous section, the different parametrization in (1) and (3) are obser-
vationally equivalent. To identify the model (up to sign identification), we will choose
H in such a way that λ′λ = D and Ση = I. Usual identification schemes would set the
upper diagonal elements of the factor loading matrix λ∗ equal to zero, λ∗ij = 0, together
with Ση∗ = I. for j > i (Aguilar and West 2000, Geweke and Zhou 1996).

Generally, if the factor loading matrix has full rank and k is properly chosen, variable
ordering does not affect theoretical model identification, given that for any variable per-
mutation BXt, we obtain an observationally equivalent factor model with factor loading
matrix Bλ∗, which may not have the lower triangular form. With an appropriately chosen
orthonormal matrix O, Bλ∗O will again be lower triangular and the factors Of ∗

t will have
the same probability distribution as the factors in the original factor model (Lopes and
West 2004). Note first however, that the sparse structure in λ∗ will usually get lost by
rotation, hence λ∗O will thus not feature a sparse structure anymore. Second, in par-
ticular in case of a sparse loading matrix, variable ordering may be an issue for model
estimation and for estimation of the number of factors. When working with the zero
upper diagonal identification scheme, the first k leading variables obtain a considerable
weight in determining the factors.

To illustrate this, assume that for a given ordering of N variables,2 the corresponding
sparse factor loading matrix λ∗ in specification (1) would be λ∗ in (5) while we would use

2Large panels of economic data are usually clustered, ranking first real variables like GDP and its
components, then adding trade data, price data, financial variables etc.
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the upper-zero diagonal identification in λ̃∗, with λ̃∗jj > 0, to estimate it.

λ∗ =



λ∗11 0 . . . . . . λ∗1k
0 0 . . . 0
0 λ∗32 0 . . . 0
...

...
...

. . . . . . 0 λ∗k−1,k−1 λ∗k−1,k

0 . . . . . . λ∗k,k−1 0
...

...
...

...
0 0 . . . 0
λ∗N1 . . . . . . λ∗Nk


, λ̃∗ =



λ̃∗11 0 . . . . . . 0

λ̃∗21 λ̃∗22 0 . . . 0
...

...
...

λ̃∗k1 λ̃∗k2 λ̃∗k3 . . . λ̃∗kk
λ̃∗k+1,1 λ̃∗k+1,2 λ̃∗k+1,3 . . . λ̃∗k+1,k

...
...

...

λ̃∗N1 . . . . . . λ̃∗Nk


(5)

In λ∗, the second-ranked variable does not provide any information on the factors and the
second factor loads on the third, but not on the second variable. Working with λ̃∗ would
be inappropriate without re-ordering the variables.

In the literature using the upper-zero diagonal identification scheme for sparse factor
models, several approaches exist to determine the relevant k leading variables. Carvalho
et al. (2008) resolve the issue by proposing a heuristic approach to determine the number
of factors and the selection and ordering of the k leading variables. First, they estimate a
“core” factor model for the variables of interest. Subsequently, they add variables which
they perceive to highly correlate with the core model. Those which correlate are retained,
and the “founder” of the potential new factor is determined. Frühwirth-Schnatter and
Lopes (2010) propose a generalized upper-zero triangular identification scheme, in which
r1 < · · · < rk, where rj denotes the row of the top non-zero entry in λ̃∗, such that λ̃∗li,j ̸= 0,

li ≥ rj and λ̃∗ij = 0, i < li. Their sampling scheme is designed in a way to explore at
the same time appropriate orderings and the relevance of the variables, and various factor
dimensions as well.

Here, we propose to identify and estimate the sparse factor model independently of the
variable ordering. To this end, while estimating the model, we will switch between the
specifications (1) and (3):

λ∗f ∗
t = (λ∗H)

(
H−1ft

)
= λft (6)

The sparse matrix λ∗ is estimated freely, i.e. independently of the variable ordering.
Conditional on λ∗, the system is rotated into specification (3), in which the factors are
estimated under the identification constraints λ′λ = D and Ση = I. The rotation matrix
H corresponds to the eigenvectors of λ∗′λ∗ arranged in descending order of magnitude of
the corresponding eigenvalues.

The sampler we propose below thus iterates over the following steps:
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(i) Simulate λ∗ from π
(
λ∗|f ∗T , XT ,Ψ(L),Σε

)
under a sparse prior.

Transform to λ = λ∗H, such that λ′λ = D, with D diagonal containing the
elements arranged in descending order of magnitude. The matrices H and D are
the solution to λ∗′λ∗ = HDH ′. They respectively correspond to the eigenvectors
and the eigenvalues of λ∗′λ∗.
Transform the dynamics to Φ(L) = H ′Φ∗(L)H. The factor innovation covariance
is Ση = H ′H = I.

(ii) Simulate fT from π
(
fT |XT , θ

)
under the identification λ′λ = D.

Transform the system back again to f ∗
t = Hft

(iii) Simulate the rest of the parameters, Φ∗(L), Ψ(L), Σε, from π
(
θ−λ∗|fT , XT , λ∗

)
.

The estimation provides a statistically identified factor model up to sign switching under
the specification (3) used in step (ii) and up to sign switching and trivial rotation in
specification (1) used in step (i). While sampling it may well be that factors are subject
to these permutations randomly. However, if the degree of sparsity is high, factors might
well be identified and the sampler might stabilize at one mode of the posterior. This is the
outcome of the simulation study, which also shows that the number of factors is rightly
inferred by the sampler, yielding mean zero columns in the loading matrix for the factors
estimated redundantly.

In empirical work, to control for column switching in a first round, having sampled λ∗ we
might arrange the factors according to the number of non-zero column-specific loadings.
This procedure also helps in determining the appropriate number of factors. In post-
processing the simulations of the factors, the researcher might have to re-arrange some
draws of the factors according to the identified factor patterns (see next paragraph). This
may be the case if the number of non-zero loadings do not differ a lot across factors. In a
final step, to ensure sign identification, we require the majority of non-zero loadings of each

factor to be positive,
(∑N

i=1 I{λ∗
ij>0}/

∑N
i=1 I{λ∗

ij ̸=0}

)
> 0.5 ∀j. If the condition is violated

the specific loading and factor draws are multiplied by -1, and also the corresponding rows
and columns of Φ∗(L).

Alternatively, one might randomly trivially rotate the factors f ∗
t , the factor loadings λ∗

and the factor-specific parameters, and randomly switch factor signs at the end of each
sweep of the sampler. This ensures that the whole posterior is explored. In post-processing
the MCMC output, the relevant factor patterns can be inferred by grouping the highly
absolutely correlated factor draws and rearranging each factor draw according to the
identified patterns. This procedure is similar to the identification procedure by k−means
clustering motivated in Früwirth-Schnatter (2011). In a final step, sign identification is
again achieved by ensuring column-wise that the majority of non-zero factor loadings is
positive.
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4 Bayesian specification

4.1 Likelihood and prior specification

The complete-data likelihood for specification (1) takes the form

L
(
XT |f ∗T , θ

)
=

T∏
t=1

π
(
Xt|f ∗t, θ

)
, (7)

where X t = (Xt, Xt−1, . . . , X1) denotes all observations up to period t. The param-
eter θ includes all model parameters to be estimated of the specification in (1), θ =
(λ∗,Φ∗,Ψ,Σε), given that Ση∗ = I. The observation density in (7) is multivariate normal

π
(
Xt|f ∗t, θ

)
=

1

(2π)N/2|Σε|1/2
exp

{
−1

2
(Ψ(L)(Xt − λ∗f ∗

t ))
′ Σ−1

ε (Ψ(L)(Xt − λ∗f ∗
t ))

}
(8)

The prior density of the unobserved factors is

π
(
f ∗T |θ

)
=

T∏
t=p+1

π
(
f ∗
t |f ∗t−1, θ

)
π (f ∗p|θ) (9)

where f ∗p contains the initial states f ∗p =
(
f ∗
p , . . . , f

∗
1 , f

∗
0

)
.

For the parameters we assume independent priors,

π (λ∗,Φ∗,Ψ,Σε) = π (λ∗)π (Φ∗) π (Ψ)π (Σε) , (10)

where the hierarchical prior π (λ∗) has a spike and slab specification:

π
(
λ∗ij
)

= (1− βij)δ0
(
λ∗ij
)
+ βijN (0, τj) (11)

π (βij) = (1− ρj)δ0 (βij) + ρjB (ajbj, aj(1− bj)) (12)

π (ρj) = B (r0js0j, r0j(1− s0j)) (13)

where the beta distribution B((ab, a(1−b)) has mean b and variance b(1−b)/(1+a). The
prior for ρj favours very small values such that r > 0 is large and s is a small probability.
The function δ0(·) is the Dirac delta function at zero.

The prior (11)-(13) implies a common probability 1 − ρjbj across variables of a zero
loading on factor j. In addition, the layer (12) reflects the viewpoint that for many
variables, the probability of association with anyone factor is zero, while for a few it will
be high. The hierarchical prior circumvents the observed problem that uncertainty about
the significance of the loadings increases with increasing N , a feature that arises when
working with a prior assuming a common base rate ρj across series to load on factor j
(Lucas et al. 2006).

Frühwirth-Schnatter and Lopes (2010) use a hierarchical prior on the factor loadings, in
which the loading significance is governed by an indicator δij = {0, 1}, with P (δij = 1|ρj).
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Table 1: Kurtosis in π (λ∗) under various parametrizations of π (τ) ∼ IG(g,G) and π (ρ) ∼
B (r0s0, r0(1− s0)) for π (β) ∼ B(0.9, 0.1)

r0 = 100
g = 2 s0 = 0.1 s0 = 0.2 s0 = 0.5 s0 = 0.75 s0 = 0.9
G = 0.18 89.69 47.70 26.52 19.89 14.75
G = 0.5 85.53 47.88 27.15 18.57 17.23
G = 1 88.40 48.81 25.36 18.55 14.77

This corresponds to a one-layer sparse prior specification (see below section 6.3). The
marginal two-layer sparse prior with expected inclusion probability of ρjbj is imple-
mentable by restricting ρj to lie in the interval [0 bj]. Still, for large N the two-layer
specification alleviates the disadvantage of the one-layer specification manifesting itself
in large standard deviations of factor loadings’ marginal posterior distributions. In addi-
tion, the second layer (12) renders the variable- and factor-specific inclusion probability
bimodal with mass separated either near zero or one, while the one-layer specification has
a uni-modal distribution near the mean inclusion probability (see figure 1 below).

4.2 The sparse prior on λ∗

To obtain an intuition of the influence of the hyperparameters ρj and βij in shaping the
prior distribution of λ∗ij, we simulate out of the prior assuming various prior means for
ρj, s0 = (0.1, 0.2, 0.5, 0.75, 0.9), with precision r0 = 100. Figure 1, panel (a), plots the
distribution for ρ under the various parameter settings. We observe that the distribu-
tion becomes increasingly skewed as the mean is shifted away from 0.5. Decreasing the
precision would reinforce the pattern. Figure 1, panel (b), shows that decreasing spar-
sity shifts the mass of the series-specific non-zero factor loading probability towards and
smoothes the bimodal shape of the distribution. With the hyperparameter constella-
tion of b = 0.9 and a = 1, we obtain expected base rates of a non-zero factor loading
of E(ρjb) = (0.09, 0.18, 0.45, 0.68, 0.81). In the most sparse setup, on average 10% of
the λ∗·j will have an expected 90% probability of a non-zero value. The resulting fat-
tailed prior distribution for λ∗ is depicted in figure 2, where, from left to right, the prior
for τ , IG(g,G) is parameterized by g = 2 and G = (0.18, 0.5, 1), yielding an expected
value E(τ) = (0.09, 0.25, 0.5), respectively. Conditional on the parameterization for π (τ),
decreasing sparsity renders π (λ∗)) less peaked. This is documented in table 1, which
reproduces the kurtosis in π (λ∗) under the various prior parameterizations. Given the
parameterization for π (ρ), becoming more diffuse in N(0, τ) apparently renders π (λ∗))
less peaked. However, table 1 shows that the kurtosis generally is not very sensitive to
changes in G. The differences are largest for the most sparse specifications.
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Figure 1: Prior distributions π (ρ) and π (β) under r0 = 100, s0 = (0.1, 0.2, 0.5, 0.75, 0.9),
b=0.9 and a=1.
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4.3 Prior specification for the remaining parameters

The remaining parameters have standard prior distributions. For the dynamic parameters
we assume multivariate normal priors truncated to the stationary region:

π (Φ∗) = N (p0,P0) I{Z(Φ∗)>1}

π (Ψ) = N (q0,Q0) I{Z(Ψ)>1}

where I{·} is the indicator function and Z(φ) > 1 means that the roots of the characteristic
equation of the process φ(L) lie outside the unit circle.

Given that Σε is diagonal, we assume independent inverse Gamma prior distributions for
the variances:

π
(
σ2
i

)
= IG (u0,U0) , i = 1, . . . , N (14)

5 Posterior inference

5.1 Sampling design

Updating the prior with data information yields the inference on the posterior distribution
of ϑ =

(
f ∗T , θ

)
, π
(
ϑ|XT

)
∝ L

(
XT |f ∗T , θ

)
π
(
f ∗T |θ

)
π (θ).

The sampler is based on the following steps
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Figure 2: Prior distribution π (λ∗), becoming (from left to right) more diffuse in N(0, τ)
with the parametrization for π (τ) ∼ IG(g,G) as g = 2 and G = (0.18, 0.5, 1). Each
panel plots the marginal distribution for various parametrizations in π (ρ), r0 = 100 and
s0 = (0.1, 0.2, 0.5, 0.75, 0.9).
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(i) Simulate λ∗ from π
(
λ∗|f ∗T , XT ,Ψ(L),Σε

)
under a sparse prior.

Transform to λ = λ∗H, such that λ′λ = D, with D diagonal containing the
elements arranged in descending order of magnitude. The matrices H and D
correspond to the eigenvectors and the eigenvalues of λ∗′λ∗, respectively.
Transform the dynamics to Φ(L) = H ′Φ∗(L)H. The factor innovation covariance
remains Ση = H ′H = I.

(ii) Update the hyperparameters of the sparse prior.

(iii) Simulate fT from π
(
fT |XT , θ

)
under the identification λ′λ = D.

Transform the system back again to f ∗
t = Hft

(iv) Simulate the rest of the parameters, Φ∗(L), Ψ(L), Σε, from π
(
θ−λ∗|f ∗T , XT , λ∗

)
.

Step (i) and (ii) closely follow Carvalho (2006) and will described in more details in
the next subsection. Step (iii) and (iv) are by now standard in the Bayesian simulation
setup. The path fT may be simulated using a multi-move sampler as proposed in Carter
and Kohn (1994), Shephard (1994), Frühwirth-Schnatter (1994). Here however, we will
implement the blocked sampling scheme proposed in Chan and Jeliazkov (2009), which
takes advantage of the fact that the system matrices are banded when observables and
latent variables are stacked. The interested reader finds details in appendix A. The
parameter simulation needs further blocking. Given the conjugate priors, the posterior
distributions are multivariate normal and inverse Wishart.

Depending on the way factor identification is implemented, the sampler is completed
by either a permutation step ordering the factors f ∗

t in descending order of the number
of factor-specific non-zero loadings and identifying the sign of the factor such that the
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majority of non-zero loadings be positive; or a random column-switch and sign-switch
permutation step to ensure that the full posterior distribution is being explored.

5.2 Sampling from the sparse posterior π
(
λ∗ij|·

)
The posterior π

(
λ∗ij|f ∗T , XT ,Ψ(L),Σε

)
is obtained by first integrating out the variable

specific prior probability of zero loading for each factor j. The prior in (11)-(13) implies
a common base rate of a non-zero factor loading of E (βij) = ρjbj across variables. The
marginal prior becomes

π
(
λ∗ij|ρj

)
∼ (1− ρjbj)δ0(λ

∗
ij) + ρjbjN (0, τj) (15)

For each factor j, transform the variables to

x∗it = ψi(L)xit −
k∑

l=1,l ̸=j

λ∗ilψi(L)f
∗
lt = λ∗ijψi(L)f

∗
jt + εit (16)

which basically isolates the effect of factor j in variable i. Combine the marginal prior
with data information to sample independently across i from

π
(
λ∗ij|·

)
=

T∏
t=q+1

π(x∗it|·)
{
(1− ρjbj)δ0(λ

∗
ij) + ρjbjN (0, τj)

}
(17)

= P
(
λ∗ij = 0|·

)
δ0(λ

∗
ij) + P

(
λ∗ij ̸= 0|·

)
N (mij,Mij) (18)

with observation density π(x∗it|·) = N
(
λ∗ijψi(L)f

∗
jt, σ

2
i

)
and where

Mij =

(
1

σ2
i

T∑
t=q+1

(
ψi(L)f

∗
jt

)2
+

1

τj

)−1

(19)

mij = Mij

(
1

σ2
i

T∑
t=q+1

(
ψi(L)f

∗
jt

)
x∗it

)
(20)

To obtain the posterior odds P
(
λ∗ij ̸= 0|·

)
/P
(
λ∗ij = 0|·

)
we update the prior odds of

non-zero factor loading:

P
(
λ∗ij ̸= 0|·

)
P
(
λ∗ij = 0|·

) =
π
(
λ∗ij
)
|λ∗

ij=0

π
(
λ∗ij|·

)
|λ∗

ij=0

ρjbj
1− ρjbj

=
N (0; 0, τj)

N (0;mij,Mij)

ρjbj
1− ρjbj

(21)

Conditional on λ∗ij we update the variable specific probabilities βij and sample from
π(βij|λ∗ij, ·). When λ∗ij = 0

π(βij|λ∗ij = 0, ·) ∝ (1− βij) [(1− ρj)δ0(βij) + ρjB (ajbj, aj(1− bj))] (22)

P (βij = 0|λ∗ij = 0, ·) ∝ (1− ρj), P (βij ̸= 0|λ∗ij = 0, ·) ∝ (1− bj)ρj

13



That is, with posterior odds (1 − bj)ρj/(1 − ρj) we sample from B (ajbj, aj(1− bj) + 1)
and set otherwise βij equal to zero. Conditional on λ∗ij ̸= 0 we obtain

π(βij|λ∗ij ̸= 0, ·) ∝ βijN
(
λ∗ij; 0, τj

)
[(1− ρj)δ0(βij) + ρjB (ajbj, aj(1− bj))] (23)

P (βij = 0|λ∗ij ̸= 0, ·) = 0, P (βij ̸= 0|λ∗ij ̸= 0, ·) = 1

In this case we sample βij from B (ajbj + 1, aj(1− bj)).

The posterior update of the hyperparameters τj and ρj is sampled from an inverse Gamma,
π (τj|·) ∼ IG (gj, Gj), and a Beta distribution, π (ρj|·) ∼ B (r1j, r2j), respectively, with

gj = g0 +
1

2

N∑
i=1

I{λ∗
ij ̸=0}, Gj = G0 +

1

2

N∑
i=1

λ∗ij
2

r1j = r0js0j + Sj, r2j = r0j(1− s0j) +N − Sj

where Sj =
N∑
i=1

I{βij ̸=0}

6 Simulations

In the following, we will address various issues that arise in factor model estimation.
After describing the data generating process, we first assess the ability of the sampler in
recovering the true number of factors and the true factor loading structure (subsection
6.2). Recovering the true factor loading structure goes hand in hand with excluding
the right series, i.e. recovering the rows with zero factor loadings on all factors. In a
second exercise we assess the estimation performance of the sampler. We compare the
root mean squared estimation error for the common component across specifications using
various numbers of factors and using various prior specifications on the loading matrix.
In particular, besides using the two-layer sparse prior introduced in section 4, we also
estimate a model using a one-layer prior and the usually used normal prior for the factor
loadings. The posterior sampling distributions under the latter two specifications are
described in subsection 6.3. Subsection 6.4 contains the results.

6.1 Simulation setup

We simulate N = 100 time series of length T = 100, driven by a k = 3 first-order
autoregressive factor process. We assume q = 1 for the idiosyncratic processes. Table 2
depicts the two settings with different degrees of sparsity. With a high precision, r0j = 500,
we simulate data with a high degree of sparsity, s0j = (0.2, 0.2, 0.1), and data with a lower
degree of sparsity, s0j = (0.9, 0.75, 0.5). Together with the hyperparameters specifying the
series-specific probability of non-zero factor loading, bj = 0.8 and aj = 0.01, this yields
respectively relatively low and high expectations of non-zero factor loadings, E(ρjbj) =
(0.16, 0.16, 0.08) and E(ρjbj) = (0.72, 0.6, 0.4). On average, in case of a high degree of
sparsity, 65% of the series will have zero factor loadings on all factors, and in case of a
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low degree of sparsity, this will be expected for only 7% of the series. The non-zero factor
loadings are simulated out of normal distributions N(mj,M), see table 3. The variance
M = 0.01 is chosen relatively tight in order to well separate the group of time series on
which each factor loads. In this way, we intend to maximize the estimation performance
of the sampler based on the normal prior for the factor loadings. The gains in estimation
performance obtained by using the sparse prior specification might thus be interpreted as
a lower bound of potential gains.

Each autoregressive coefficient of the idiosyncratic components, ψi, is simulated out of
a normal distribution N (0, 0.09), while the variance of the idiosyncratic error terms is
fixed to 1− 1/3 (0.912 + 0.752 + 0.642) (see table 3). The hyperparameter and parameter
constellation is chosen such that each factor, if solely loading on a time series and taking
into account its autoregressive process, approximately accounts for a variance share lying
between 65% and 74%, see table 4.

Assigning the same importance to each factor (on its own), provided that it loads on
a time series, in our view renders the following simulation exercise less dependent on
the importance of the common components, hence less dependent on differences between
factors in signal to noise ratios. We want to evaluate the performance of the estimation
when a lower and a larger number of factors than appropriate is assumed to drive the
variables and whether the advantage of the two-layer sparsity prior persists also in the
case of a decreasing degree of sparsity.

Table 2: Hyperparameter settings in simulations and estimations, with factor-specific
expected probability of non-zero factor loadings, E (ρjbj). Expected share of zero factor
loading rows is r0.

bj = 0.8, aj = 0.01 s0j =
r0j = 500 (0.2,0.2,0.1) (0.9,0.75,0.5)
E (ρjbj) (0.16,0.16,0.08) (0.72,0.6,0.4)

r0 =
∏3

j=1E (P (λij = 0)) 0.65 0.07

Estimation prior
r0j = 50 (0.2,0.2,0.1) (0.9,0.75,0.5)

(0.3,0.3,0.3) (0.75,0.75,0.75)

To sum up, the simulated data generating process takes the form:

Xit = λ∗i f
∗
t + ξit (24)

f ∗
t =

 0.3 0 0
0 0.5 0
0 0 0.8

 f ∗
t−1 + η∗t , η

∗
t ∼ N (0, I) (25)

ξit = ψiξi,t−1 + εit, εit ∼ N
(
0, σ2

i

)
(26)

where the non-zero factor loadings in λ∗i and the coefficients ψi, i = 1, . . . , N , are simulated
out of the normal distributions depicted in table 3.
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Table 3: Parameter settings of the simulation distributions

Parameters Setting, distribution

λ∗ij, i = 1, . . . N N (mj,M)

M = 0.01, m1 = 0.91, m2 = 0.75, m3 = 0.64

ψi, i = 1, . . . N N (0, 0.09)

σ2
i 1− 1/3 (0.912 + 0.752 + 0.642)

Table 4: Autoregressive factor process and approximate variance share

Φ∗ =

 0.3 0 0

0 0.5 0

0 0 0.8

, Ση∗ = I

Approximate signal variance Approx. variance share

V ar
(
λ∗·jf

∗
jt

)
of common component

Factor 1 0.91 0.69

Factor 2 0.75 0.65

Factor 3 1.14 0.74

For each of the sparsity degrees depicted in table 2 we produce 10 replications of data. The
dynamic factor model is then estimated for k = 2, 3, 4 factors. To evaluate the estimation
performance we additionally estimate the factor models under the one-layer sparsity prior
and the normal prior for the factor loadings. We draw 6,000 times from the posterior,
discard the first 2,000 draws and retain every second one to evaluate the performance in
recovering the true factor loading structure and to compute the estimation error statistics
and the estimation precision of non-zero factor loadings. 6,000 draws might seem a low
number. However, it turns out that the sampler converges quite quickly under both, the
informative and the less informative, prior settings for the factor loadings (see table 2,
bottom panel) and under the informative priors for the rest of the parameters (see table
5).

6.2 Series exclusion and factor structure

Table 6 depicts the average exclusion error and the average error in estimating the factor
structure. The average absolute exclusion error (AEE) computes the excess number of
(rightly excluded) series that have all zero factor loadings – working with the median of
the posterior, λ̄∗, while the relative (REE) exclusion error sets the absolute exclusion error
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Table 5: Prior specification in the simulation exercise.

Distribution Hyperparameter setting

Sparse prior (ρj, βij) r0j = 50, s0j: various specifications, see table 2

bj = 0.8, aj = 0.01

Factor loading (τj) h0 = 2, H0 = 0.25

Factor autoregression (Φ) p0 = 0

P0: Minnesota with prior diagonal variance 0.16

shrink factor for off-diagonals 0.078

Idiosyncratic autoregression (ψi) q0 = 0, Q0 = 0.16

Idiosyncratic error variance (σ2
i ) u0 = 2, U0 = 1

in relation to the number of truely excluded series in the panel, N
(r)
0 =

∑N
i=1 I{λ∗(r)

ik =0,∀k}:

AEE =
1

R

R∑
r=1

(
N∑
i=1

I{λ̄∗(r)
ik =0,∀k}I{λ∗(r)

ik =0,∀k}

)
−N

(r)
0

REE =
1

R

R∑
r=1

1

N
(r)
0

[(
N∑
i=1

I{λ̄∗(r)
ik =0,∀k}I{λ∗(r)

ik =0,∀k}

)
−N

(r)
0

]
(27)

For the specification k = 2, the first line reports the overall exclusion error, i.e. AEE and
REE without multiplying with I{λ∗(r)

ik =0,∀k}. We observe that assuming too few factors

leads to a larger estimated number of excluded series. Nevertheless, usually the truely
excluded series are rightly estimated to be excluded. For example, given a high degree of
sparsity and a sparse prior, an excess of 6 series is excluded – which amounts on average
to 10% of N

(r)
0 – while basically all of the truely excluded series are rightly excluded –

see the second line corresponding to k = 2. For the factor specification k = 3, 4 we only
report the AEE and REE, because the numbers are the same for the overall exclusion
error. We observe that up to 1 series which should be is usually not excluded. With
decreasing sparsity, 1 series accounts for a larger share of excluded series, e.g. to 13% of
truely excluded series.

Table 6 also reports the average factor structure error, again in absolute numbers of
loadings and relatively to N :

1

NR

R∑
r=1

(
I′
{λ̄∗(r)

ik ̸=0}
· I{λ∗(r)

ij ̸=0}

)
(28)

where I{λ∗(r)
ij ̸=0} is a N × k 0-1 matrix with 1’s indicating the non-zero factor loadings.

Numbers on the diagonal in table 6, mjj, indicate the number of non-zero factor loadings
for factor j, off-diagonal numbers, mjl indicate how many non-zero loadings the factors j
and l have in common. Given that the matrices are symmetric, we only report the lower
diagonal part.
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Overall, the true number of factors is detected. The specification with k = 4 on average
yields a column of zero factor loadings or a column with less than three non-zero factor
loadings. In case of a high degree of sparsity, the loading structure is recovered with less
than 5% error. It pays off to reduce the information degree of the prior, see the panels
with r0j = 50 and, respectively s0j = (0.3, 0.3, 0.3) and s0j = (0.75, 0.75, 0.75). The
estimation error is reduced, particularly when the degree of sparsity is low and according
to the simulations when k = 4.

Table 6: Exclusion error and loading structure error for
data with a high and a low degree of sparsity.

Specification Exclusion error Factor structure error

AEE/REE absolute error relative to N = 100

Simulation: r0j = 500, s0j = (0.2, 0.2, 0.1)

– Estimation prior: r0j = 50, s0j = (0.2, 0.2, 0.1)

k = 2 6.2/0.10

-0.2/-0.00

k = 3 -0.6/-0.01

 2.1

4.4 2.8

0.1 0.2 0.2


 0.02

0.04 0.03

0.0 0.0 0.0



k = 4 -0.4/-0.01


0.2

0 0.1

0.2 0.1 0.3

0 0 0 0




0.0

0 0.0

0.0 0.0 0.0

0 0 0 0


– Estimation prior: r0j = 50, s0j = (0.3, 0.3, 0.3)

k = 2 5.3/0.08

-0.2/-0.00

k = 3 -0.5/-0.01

 0.2

0.3 0.3

0 0.2 0.4


 0.0

0.0 0.0

0 0.0 0.0



k = 4 -0.4/-0.01


0.2

0.2 0.2

0 0.1 0.3

0 0 0 0




0.0

0.0 0.0

0 0.0 0.0

0 0 0 0


Simulation: r0j = 500, s0j = (0.9, 0.75, 0.5)

– Estimation prior: r0j = 50, s0j = (0.9, 0.75, 0.5)

k = 2 0.13/0.10

-0.8/-0.15

A diagonal figure fjj indicates the number of non-zero loadings for factor j, the off-diagonal
figure fjl indicates the number of common non-zero loadings for factor j and l.
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Table 6: Exclusion error and loading structure error, con-
tinued.

Specification Exclusion error Factor structure error

AEE/REE absolute error relative to N = 100

k = 3 -0.63/-0.13

 8.4

18.3 13.3

10.0 15.9 5.8


 0.08

0.18 0.13

0.10 0.16 0.06



k = 4 -0.63/-0.13


9.1

15.1 9.6

5.0 9.3 1.9

0 0 0 0




0.09

0.15 0.10

0.05 0.09 0.02

0 0 0 0


– Estimation prior: r0j = 50, s0j = (0.75, 0.75, 0.75)

k = 2 0.4/0.07

-0.4/-0.05

k = 3 -1.4/-0.27

 9.0

16.4 8.5

13.3 15.5 12.4


 0.09

0.16 0.09

0.13 0.16 0.12



k = 4 -1.1/-0.24


7.9

12.6 5.4

8.0 6.8 6.6

2.3 1.5 1.5 2.9




0.08

0.13 0.05

0.08 0.07 0.07

0.02 0.02 0.02 0.03


A diagonal figure fjj indicates the number of non-zero loadings for factor j, the off-diagonal
figure fjl indicates the number of common non-zero loadings for factor j and l.

6.3 Relaxing the sparse prior

In the next section we will evaluate the performance of the sparse factor model using a
prior loading specification with two layers against the factor model estimated under a
one-layer prior loading specification and against the factor model estimated under the
widely used normal prior (Bernanke, Boivin and Eliasz, 2005, inter alia). Therefore, in
this section we derive the posterior distributions to sample from when the two-layer sparse
prior is relaxed to a one-layer sparse prior and to a normal prior.

The one-layer sparse prior assumes that there is a common probability across units of
zero loading on factor j:

π
(
λ∗ij
)

= (1− ρj)δ0
(
λ∗ij
)
+ ρjN (0, τj) (29)

π (ρj) = B (r0js0j, rj(1− s0j)) (30)

where, as in (13), s0j is a small expected probability of non-zero factor loading and r0j
is large. The posterior for λ∗ij is basically governed by the same moments as derived in
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(18)–(20), with adjusted posterior odds of zero factor loading, however:

P
(
λ∗ij ̸= 0|·

)
P
(
λ∗ij = 0|·

) =
π
(
λ∗ij
)
|λ∗

ij=0

π
(
λ∗ij|·

)
|λ∗

ij=0

ρj
1− ρj

=
N (0; 0, τj)

N (0;mij,Mij)

ρj
1− ρj

(31)

The posterior of hyperparameter ρj is in this case π (ρj|·) ∼ B (r1j, r2j) with

r1j = r0js0j + Sj, r2j = r0j(1− s0j) +N − Sj

where Sj =
N∑
i=1

I{λ∗
ij ̸=0}

Under a normal prior for λ∗i = (λ∗i1, . . . , λ
∗
iK)

′,

π (λi) ∼ N (0, τ) τ =

 τ1 0
. . .

0 τk

 (32)

π (τj) ∼ IG (g0, G0) , (33)

we may sample independently over i using the transformation

x∗it = ψi(L)xit =
k∑

j=1

λ∗ijψi(L)f
∗
kt + εit, εit i.i.d N

(
0, σ2

i

)
(34)

from the posterior

π (λi|·) = N (mi,Mi) (35)

Mi =

(
1

σ2
i

F ∗
i
′F ∗

i + τ−1

)−1

(36)

mi = Mi

(
1

σ2
i

F ∗
i
′X∗

i

)
(37)

where F ∗
i and X∗

i are, respectively, the predictor matrix and the vector of transformed
variables in equation (34):

X∗
i =

 x∗i,q+1
...
x∗iT

 , F ∗
i =

 ψi(L)f
∗
1,q+1 · · · ψi(L)f

∗
k,q+1

...
...

ψi(L)f
∗
1,T · · · ψi(L)f

∗
k,T

 (38)

The posterior of the hyperparameter τj is π (τj|·) = IG (gj, Gj), with gj = g0 + 0.5N and

Gj = G0 + 0.5
∑N

i=1 λ
∗
ij
2.

6.4 Estimation efficiency

The performance is evaluated based on the root mean squared estimation error of the
common component:

RMSEE(s) =
1

R

1

N

1

M

R∑
r=1

N∑
i=1

M∑
m=1

√√√√ 1

T

T∑
t=1

(
λ̂
∗(m,r,s)
i f̂

∗(m,r,s)
t − λ

∗(r,s)
i f

∗(r,s)
t

)2
(39)
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Table 7: Relative root mean squared estimation error of the common component under
different prior specifications for the factor loadings, averaged over series, and replications.
The numbers are expressed relative to the model estimated for k = 3 using the two-layer
sparse prior specification.

Scenarios: r0j = 500, s0j =
(0.2,0.2,0.1) (0.9,0.75,0.5)
Estimation prior: r0j = 50, s0j =

Estimated model (0.2,0.2,0.1) (0.3,0.3,0.3) (0.9,0.75,0.5) (0.75,0.75,0.75)
Two-layer sparse prior
k = 2 1.65 1.55 2.39 2.34
k = 4 1.03 1.10 1.02 1.05
One-layer sparse prior
k = 2 1.65 1.49 2.43 2.29
k = 3 1.00 1.01 1.00 1.00
k = 4 1.03 1.12 1.04 1.10
Normal prior
k = 2 2.38 2.18 2.55 2.30
k = 3 2.07 2.05 1.12 1.08
k = 4 2.25 2.24 1.19 1.15

where for sparsity scenario s, R = 10, M = 2000, N = 100, T = 100 refer to the number
of replications, the number of draws from the estimated posterior distribution, the number
of simulated series and their length, respectively.

In table 7 we observe that the model estimated with the right number of factor always
performs best. The efficiency losses to incur when using a one-layer instead of a two-layer
prior appear minor when the true number of factors is assumed. In case of misspecification,
the loss increases as the degree of sparsity decreases. Moreover, with a decreasing degree of
sparsity, the efficiency gain of using the two-layer prior against the normal prior decreases.
Finally, the loss in efficiency is largest for models estimated with a lower than the true
number of factors.

7 Application: A large Swiss data set

7.1 Data and prior specification

To illustrate the method, we estimate a sparse factor model for a large Swiss panel data
set. The dataset has been assembled and used by Kaufmann and Lein (2012), who inves-
tigate the existence of a price puzzle within a factor augmented VAR (FAVAR) approach.
The data include 137 macroeconomic time series and 145 price series, measured at the
quarterly frequency and covering the period of the first quarter of 1978 to the third quarter
of 2008. The macroeconomic data series characterize the main aspects of the Swiss econ-
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Table 8: Determining the number of factors. Distribution of variance share explained by
the common component (CC).

k = 3 k = 4 k = 5 k = 6 k = 7
Bai&Ng ICp3 -0.20 -0.19 -0.16 -0.14 -0.13
Share of excluded series 0.15 0.17 0.15 0.15 0.14
Share of series with a variance share of CC

≤ 20% 0.39 0.34 0.35 0.29 0.29
≥ 60% 0.07 0.10 0.09 0.11 0.14
≥ 80% 0.01 0.02 0.02 0.02 0.03

Variance share explained by CC
Mean 0.27 0.29 0.29 0.32 0.33
Median 0.22 0.24 0.25 0.27 0.29

Increase in the variance share of CC
Mean 0.01 0.01 0.02 0.01

omy and include, besides GDP and its components, series on real activity and the labor
market, housing, financial markets and the GDP of Switzerland’s major trading partners.
Leading information is provided by consumer confidence surveys, production and price
expectations in the manufacturing, wholesale and retail sale sectors, respectively. The
price series cover about 90% of the Swiss CPI, including services and rents, non-durable,
semi-durable and durable goods. For a detailed description of the data compilation see
Kaufmann and Lein (2012).

We orientate ourselves towards Kaufmann and Lein (2012) to select in a first round the
number of factors to estimate. They include three factors and the 3-month Libor as an
additional one. Therefore, we estimate sparse specifications with three to seven factors to
assess the appropriate number. In all specifications, we allow for two autoregressive lags
in the idiosyncratic component and two lags for the factor dynamics. The sparse prior
assumes a mean non-zero factor loading of s0 = 0.2 with a relatively high precision of
r0 = 100, corresponding to 35% of the observed 282 time series. The series specific prior
assumes a non-zero expected probability of b0 = 0.8, with a0 = 0.01. The prior variance
of the normal prior for the non-zero factor loadings is specified by π(τj) ∼ IG (2, 0.25).

7.2 Estimation and identification

Table 8 depicts several measures which are useful to assess the number of factors. We
also choose k = 4 based on the various measures presented. On the first line, we report
the information criterion ICp3 of Bai and Ng (2002). We adjust it and include only series

with non-zero factor loadings, i.e. N is substituted by
∑N

i=1 I{λ∗
ij ̸=0,∀j}, and we average

over all MCMC simulations. There is a minimal increase in the criterion from k = 3 to
k = 4. Moreover, we do not obtain a significant increase in the variance share explained
by the common component by increasing the number of factors above four, see the last
line in table 8. At k = 4, we exclude a maximum share of series (47 series or 17%) without
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loosing much of the share of the common component in explaining the variance of the
series. At k = 4, we explain up to 20% of the variance for 34% of the series and more
than 60% and 80% of the variance for 10% and 2% of the series, respectively. Overall
the variance share explained averages 29% in the panel. Finally, in the model k = 4, the
first three factors load each exclusively on a subset of series, while the fourth factor loads
on series that are also influenced by at least one of the other factors. So, in view of the
simulation results, with which we document that the loss in efficiency is smaller when
a larger rather than a lower than the true number of factors is assumed, we work with
k = 4.

All the measures but the ICp3 criterion presented in table 8 are based on identified factor
models for different k and are computed as the mean over all iterations using the significant
non-zero factor loadings. A loading is defined as significant, if the median of all draws
is different from zero, but we obtain the same inference when using the median of the
simulated inclusion probabilities (the βijs). Identification is obtained while estimating
the model: In the present case, while iterating over the sampler, we re-order the sampled
values at the end of each sweep according to the column-specific number of non-zero factor
loadings. Given the evidence presented in Kaufmann and Lein (2012), we opted for this
procedure. This yields a preliminary ordering of the factors (without sign-identification)
according to their importance in terms of significant factor loadings.

To ensure that this preliminary ordering yields a unique factor ordering, we post-process
the MCMC iterations and first group the factor-specific draws according to their highest
correlation (higher than 0.9) in order to obtain the factor-specific defining pattern. The
rest of the iterations is then re-ordered again according to highest absolute correlation
with the defining factor-specific patterns. Accordingly, the corresponding iterations of the
other factor-specific parameters, λ∗, β and Φ(L)∗, and factor-specific prior hyperparam-
eters, τ and ρ, are also re-ordered. Finally, we perform a sign switch on the iterations
negatively correlated with the factor-specific pattern and achieve overall sign identification
by ensuring that the majority of the non-zero factor-specific loadings are positive.

7.3 Results

Figure 3 depicts the mean of the identified factors along with a 95% confidence interval.
We are able to identify two factors which are comparable to the ones estimated by Kauf-
mann and Lein (2012) and two which differ from their estimates. Thinking in terms of
inflation, factor 1 can be related to the periods of high and low inflation. Indeed, in figure
4 we observe that most price series, the loadings of which are at the right of the yellow
bar, are mainly related to factor 1. In table 9 we report the labels of the series which are
loaded uniquely by one factor (except for factor 4). The inference is obtained based on
the median of the MCMC draws and a * indicates a negative loading. Again, we observe
that mostly price series, the ones with alphanumerical labels, are loaded by factor one
(see table 10 for the corresponding price series). Factor 2, with dips at the beginning of
the 1980s, 1990s and 2000s, obviously relates to economic activity. According to table 9,
GDP and some components, some labor market series and survey series are solely affected
by factor 2. Factor 3 and 4 differ from the ones estimated in Kaufmann and Lein (2012).
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According to the series solely affected by factor 3, in particular the exchange rates of
Switzerland’s main trading partners, the oil price and energy prices (D090 is heating oil
and G105 fuel), we can relate this one to international monetary conditions. The remain-
ing factor 4 captures special features of a subgroup of price series. All series loaded by
factor 4 are also affected by one of the previous factors. The observed spike in this factor
(see figure 3) captures special price increases, mainly on domestic goods and services,
registered in the course of the substitution of the sales tax by the value-added tax at the
beginning of 1995. The labels in table 9 reveal that prices on electricity, public transport,
cinema and alcoholic beverages in restaurants were registered to be exceptionally affected.

The evidence is completed by noting that, again based on the median of the draws for
the factor loadings, 47 series are excluded from the factor model, which corresponds to
roughly 17% of the data. In the top panel of table 9, we depict the estimated loading
structure. The first two factors load on nearly all series with non-zero factor loadings,
227 series out of 235. Figure 5 renders yet another picture of the loadings. The scatter
plots depict in blue dots the lower bound of the 95% highest posterior density interval
against the upper bound and the red stars depict the lower bound of the interval against
the median of the draws. From the zero line and the 45 degree line, we observe that some
of the loadings with median different from zero still have one of the bounds including
zero. However, for these factor loadings, the serie-specific median and mean probabilities
of non-zero factor loadings are usually very close to one or higher than 50%, respectively.

Finally, figure 6 plots the marginal posterior distribution for ρj. The prior is consider-
ably updated and shifted away from the mean of 0.2 for the factors 1,2, and 4, each in
accordance to the number of non-zero factor-specific loadings.

Figure 3: Posterior mean of factors.
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Table 9: Loading structure and series classification. For factor 1 to factor 3 we display
the series uniquely affected by the respective factor. The series displayed for factor 4 are
all also determined by (some of) the other factors. A * indicates series with negative
loadings.

Loading structure


183

57 101

11 9 24

13 6 1 17


Factor 1 *IPICHEM, EMPINS, *RESBUILD, HPRAPP, ZSEIDG10, MRATE,

*SPRSNB, *NOTENUMLAUF, *SMPICRB, CONSPRI, KOF19,
KOFRSLS, *USGDP, *WORLDTRADE, *PMIUSA, A003, A008,
A014, A058, A065, A107, A115, A145, A170, A179, A200, A207, A212,
A236, A246, A265, A285, A293, A297, A308, A347, A423, A449, A455,
A481, A532, A539, A545, A552, A732, A862, B002, B010, B019, B046,
B064, B082, C004, C015, C020, C027, C033, C050, C086, C093, C099,
C126, C134, C175, C190, C198, C212, C220, C228, C237, D001, E002,
E040, E050, E060, E071, E090, E100, E120, E150, E180, E221, F031,
F036, G003, G062, G071, G082, G096, G113, H016, I003, I077, I085,
I120, I211, I230, I300, I352, I420, I450, I501, I555, I570, L023, L100,
L120, L130

Factor 2 GDP, PRICONS, INVEST, EQINV, INVENT, INDPROD, IPIMET,
IPIENG, OECDLEAD, CEMENT, MANPOW, EMP2, EMPCHEM,
EMPMET, EMPIND, HOURS, *URATE, OVERTIME, M2, *M3,
EXPTOT, CONSFIN, CONSECO, CONSSAVE, KOF03, KOF05,
KOF09, *KOF21, KOF27, KOFINDBS, KOFWSDEL, KOFWSEXPD,
NOISEC2, UOISEC2, EMUGDP, *I400

Factor 3 EXPSER, CHFUSD, CHFEUR, CHFJPY, *REERUSD, OIL, D090,
G105

Factor 4 *IPIWOOD, EMPREST, EXPPRIC, *CONSPURCH, *B058, D070,
*E141, G210, G220, I436, K003, K052, K070, K075, K091, K103, L003

Excluded series GOVCONS, CSTRINV, IMPSER, IPIFOOD, IPIMIN, IPIENWA,
RETSALCF, RETSALFOOD, EMP1, EMPCOMM, EMPE-
DUC2, EMPADM, REDHRS, PARTRATE, HAPPR, HFINISH,
CIVENG, HPAPP, HPINDU, HPSFH, UBS100, MSCI, TOTMAR,
CHFJPYVOL, REERJPY, KOFRSJS, JPGDP, MSCIWLD, A076,
A088, A097, A417, A519, B031, B075, C061, C067, C079, C168, D010,
D050, F002, H001, I029, I465, I475, K170

The macroeconomic series are tabulated in Kaufmann and Lein (2011, table 4), the price series
are found in appendix B (table 10).
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Figure 4: Posterior median of factor loadings. The yellow bar indicates the sample split
between macroeconomic and price variables. The bottom right panel plots the series with
zero factor loading rows, these are 51 out of 282 series.
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8 Conclusion

In the present paper we estimate a sparse dynamic factor model with Bayesian methods.
The sparsity is useful to obtain an additional meaningful interpretation of the factors and
to identify the variables irrelevant for factor estimation simultaneously while estimating
the model. Variables with non-zero loadings in the same column are indicative of the
interpretation of the factors. Variables with zero loadings on all factors are those which
are irrelevant for the factor model. Moreover, we propose an identification procedure
which is independent of variable ordering based on the semi-orthogonal representation of
the sparse loading matrix. Sparsity is induced by designing a two-layer sparse prior on
the factor loadings. A base rate governs the factor-specific mean probability of a non-zero
loading, while, conditional upon the base probability, a unit-specific probability governs
the probability of a non-zero loading for each series specifically.

The model is estimated with a Gibbs sampler. The estimation speed is greatly improved
by applying a precision-based sampler. Simulations document that the true factor loading
structure is nearly exactly recovered in settings with a high degree of sparsity. In settings
with a low degree of sparsity, the loading structure is in general recovered with an error
of less than 10%. With decreasing sparsity, the gains in estimation efficiency of using the
two-layer sparse prior relatively to the normal prior specification on loadings diminishes
but remain positive. Generally, compared with estimating a factor model with a fewer
number of factors than the true number, the loss in estimation efficiency is lower when
estimating factor models with a larger number of factors than the true number.

The estimation of a sparse factor model for a large dataset of Swiss macroeconomic (137)
and price (145) series illustrates the method. We find four factors to be appropriate to
capture the covariance structure in the data. The two factors loading on most series can
be interpeted as an inflation and a business cycle factor, respectively. The third reflects
international monetary conditions. The fourth factor, finally, affects a subset of the price
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Figure 5: 95% highest posterior interval (blue, lower against higher bound) and median
(red, lower bound against median) of factor loadings.
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series and reflects price increases registered at the start of 1995 due to the substitution of
the sales tax by the value-added tax.
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Figure 6: Marginal posterior of ρj.
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A Posterior distributions

To derive the sampler, we first condense the variables in model (3) to:

Ψ(L)Xt = x∗t = λft − λ⊙ (ψ·1 ⊗ 11×k) ft−1 − · · · − λ⊙ (ψ·q ⊗ 11×k) ft−q + εt (40)

εt ∼ N (0,Σε) , Σε diagonal

ft = Φ1ft−1 + · · ·+ Φpft−p + ηt, ηt ∼ N (0, Ik) (41)

where ⊙ and ⊗ represent the Hadamar and the Kronecker product, respectively. The row
vector 11×k contains as elements k ones. We stack the observations to obtain the matrix
representation:

X = ΛF+ ε, ε ∼ N (0, IT−q ⊗ Σε) (42)

ΦF = η η ∼ N (0,S) (43)

whereX = (x∗1
′, . . . , x∗T

′)
′
contains all observed data, F =

(
f ′
q+1−max(p,q), . . . , f

′
q+1, . . . , f

′
T

)′
stacks all unobserved factors, including initial states. The matrices Λ and Φ are respec-
tively of dimension (T − q)N × (T + d) k and square (T + d)k, with d = (p − q)I{p>q}.
Typically, these matrices are sparse and banded around the main diagonal:

Λ =

 −λ⊙ (ψ·q ⊗ 11×k) . . . λ 0 . . . 0

0(T−q)N×dk
. . . . . . . . .

...
0 . . . 0 −λ⊙ (ψ·q ⊗ 11×k) . . . λ



Φ =


Ip ⊗ Ik 0 . . .

− Φp . . . −Φ1 Ik 0 . . .
. . .

. . . 0 −Φp . . . −Φ1 Ik

 , S =

 Ip ⊗ Σ0
η 0 . . .

0
... IT+d−p ⊗ Ik


where Σ0

η represents the variance of the initial states (see below).

The sampler proposed in section 5 consists in iterating over the following steps:
(i) Simulate fT from π

(
fT |XT , θ

)
under the identification λ′λ = diagonal.

(ii) Simulate the parameters from π
(
θ−λ|fT , XT , λ

)
(iii) Transform the system to f ∗

t = H−1ft, with H = Σ
1/2
η

and Φ∗(L) = H−1Φ(L)H, Ση∗ = I.
Simulate λ∗ from π

(
λ∗|f ∗T , XT ,Ψ(L),Σε

)
under a sparse prior.

Transform to λ = λ∗H−1 with H = (λ∗′λ∗)
1/2

, Ση = HH ′, Φ(L) = HΦ∗(L)H−1.
Step (iii) has been described in the main part of the paper. Here we derive the relevant
posterior distributions for step (i) and (ii).

(i) Simulate fT from π
(
fT |XT , θ

)
We adapt the sampler proposed in Chan and Jeliazkov (2009) to the present setup, which
allows to sample fT in one sweep. Compared with multi-move sampling, we obtain an
improvement in computing time by a factor of up to seven. Given the representation in
(42)-(43), the complete data likelihood has a normal density

f (X|F, θ) ∼ N (ΛF, IT−q ⊗ Σε) (44)
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For the unobserved states, from (43) we obtain the following prior:

F|θ ∼ N
(
0, F−1

0

)
(45)

F0 = Φ′S−1Φ

If in S, the variance of the initial states, Σ0
η, is not chosen to be diffuse, we may use as initial

conditions the stationary variance arising from the condensed VAR(1) representation of

(41), Ft = Φ̃Ft−1 + ηt, ηt ∼ N

(
0,

[
Ik 0k×(p−1)k

0(p−1)k×pk

])
, with

Φ̃ =

[
Φ̃1

Φ̃2

]
(46)

Φ̃1 = [Φ1 . . . Φp]

Φ̃2 =
[
I(p−1)k 0(p−1)k×k

]
We then have E(FtF

′
t) = Φ̃E(Ft−1F

′
t−1)Φ̃

′
+Ση and ΣF = Φ̃ΣFΦ̃

′
+Ση. The vec operator

yields

vec(ΣF) =
[
I(pk)2−(Φ̃⊗ Φ̃)

]−1

× vec (Ση) (47)

from which we can retrieve the corresponding values for Σ0
η.

Combining the prior with the likelihood, the posterior is:

F|X, θ ∼ N
(
f, F−1

)
(48)

F = F0 +Λ′ (IT−q ⊗ Σ−1
ε

)
Λ

f = F−1Λ′ (IT−q ⊗ Σ−1
ε

)
X

To avoid the full inversion of F we take the Cholesky decomposition, F = L′L, then
F−1 = L−1L−1′. We obtain a draw F by setting F = f + L−1ν, where ν is a (T + d)k
vector of independent draws from the standard normal distribution.

(ii) Simulate the parameters from π
(
θ−λ|fT , XT , λ

)
We block the posterior simulation of the parameters. The dynamics of the idiosyncratic
components ψi = (ψi1, . . . , ψiq)

′, i = 1, . . . , N can be sampled individually.

π
(
ψi|Xi, f

T , θ−Ψ

)
= N (qi,Qi) I{Z(Ψ)>1}, i = 1, . . . , N

where

Qi =
(
σ−2
i X̃−′

i X̃
−
i +Q−1

0

)−1

qi = Qi

(
σ−2
i X̃−′

i X̃i +Q−1
0 q0

)
where X̃i and X̃

−
i are the vector of the transformed variable i and the predictor matrix

of the transformed system

X̃i =

 Xi,q+1 − λifq+1
...

XiT − λifT

 X̃−
i =

 Xiq − λifq · · · Xi1 − λif1
...

...
Xi,T−1 − λifT−1 · · · Xi,T−q − λifT−q


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The dynamics of the common factors Φ∗ =
[
Φ∗

1 . . . Φ∗
p

]′
are jointly sampled from

π
(
vec (Φ∗) |f ∗T ) = N (p,P) I{Z(Φ∗)>1}

where

P =
([
Ik ⊗ f ∗−]′ [Ik ⊗ f ∗−]+ P−1

0

)−1

p = P
([
Ik ⊗ f ∗−]′ vec (f ∗) + P−1

0 p0

)
where f ∗ =

[
f ∗
p+1 . . . f ∗

T

]′
and

f ∗− =

 f ∗′
p · · · f ∗′

1
...

...
f ∗′
T−1 · · · f ∗′

T−p


The posterior distribution of Ση is inverse Wishart IW = (e,E) with e = e0 + 0.5(T − p)
and E = E0 + 0.5 (f − f−Φ)

′
(f − f−Φ).

We simulate σ2
i from independent IG = (ui,Ui) distributions, i = 1, . . . , N , with ui =

u0 + 0.5(T − q) and Ui = U0 + 0.5
(
X̃i − X̃−

i ψi

)′ (
X̃i − X̃−

i ψi

)
.
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B Price series labels

Table 10: Price series

Label Description Label Description

A003 Rice A008 Flour
A014 Bread A033 Pastries
A058 Pasta A065 Other cereal products
A076 Beef A088 Veal
A097 Pork A107 Lamb
A115 Poultry A133 Other meat
A145 Sausages A170 Other processed meat
A179 Frozen fish A180 Fresh fish
A200 Whole milk A207 Other type of milk
A212 Hard cheese A236 Tinned fish and smoked fish
A246 Other dairy products A265 Cream
A278 Eggs A285 Butter
A293 Margarine, fats, edible oils A297 Other cheese
A308 Fresh fruits A347 Dried, frozen and tinned fruit
A361 Fresh vegetables A417 Potatoes
A423 Dried, frozen, tinned vegetables A449 Jam, honey, sweets
A455 Chocolate A475 Sugar
A481 Soups, spices, sauces A519 Coffee
A532 Tea A539 Cocoa and nutritional beverages
A545 Natural mineral water A552 Soft drinks
A732 Ready-made foods A862 Fruit or vegetable juices
B002 Spirits/brandies B010 Liqueurs and aperitifs
B019 Swiss red wine B031 Foreign red wine
B046 Swiss white wine B058 Foreign white and sparkling wine
B064 Beer B075 Cigarettes
B082 Other tobacco products C004 Men: coats, jackets
C015 Men: suits C020 Men: trousers
C027 Men: shirts C033 Men: sweaters
C041 Men: underwear C050 Sportswear
C061 Women: coats, jackets C067 Women: costumes, trouser suits,

dresses
C079 Women: trousers C086 Women: jackets
C093 Women: blouses C099 Women: other clothing
C126 Children: coats and jackets C134 Children: other clothing
C168 Garment fabrics C175 Other clothing accessories
C190 Garment alterations C198 Upkeep of textiles
C212 Women: footwear C220 Men: footwear
C228 Children: footwear C237 Shoe repairs
D001 Rent D010 Products for housing maintenance

and repair
D020 Services for housing maintenance

and repair
D050 Natural gas

D070 Electricity D090 Heating oil
E002 Furniture: livingroom and bedroom E040 Furniture: kitchen and garden
E050 Furnishings E060 Floor coverings and carpets
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Table 10: Price series label, continued.

Label Description Label Description

E071 Bed linen and household linen E090 Curtains and curtain accessories
E100 Major household appliances E120 Smaller electric household appli-

ances
E141 Kitchen utensils E150 Tableware and cutlery
E180 Tools for DIY and garden E221 Goods for routine household main-

tenance
F002 Medicines F031 Medical services
F036 Dental services F059 Hospital services
G003 New cars G062 Motorcycles
G071 Bicycles G082 Spare parts
G096 Tyres and accessories G105 Fuels
G113 Repair services and work G210 Public transport: direct service
G220 Pubic transport: combined services H001 Postal services
H016 Telecommunication services I003 Television sets and audiovisual ap-

pliances
I029 Photographic, cinematographic

equipment and optical instruments
I077 PC hardware

I085 Recording media I120 Repair and installation
I211 Games, toys and hobbies I230 Equipment for sport, camping and

open-air recreation
I300 Plants and flowers I320 Pets and related products
I352 Sporting events I400 Sports and leisure activities
I420 Mountain railways, ski lifts. I436 Cinema
I450 Theatre and concerts I465 Radio and television licences
I475 Photographic services I490 Leisure-time courses
I501 Books and brochures I525 Daily newspapers and periodicals
I555 Writing and drawing materials I570 Package holidays
J050 Life-long learning K003 Meals taken in restaurants and cafs
K052 Wine taken in restaurants K070 Beer taken in restaurants
K075 Spirits, other alcoholic drinks taken

in restaurants
K091 Coffee and tea taken in restaurants

K103 Other beverages taken in restau-
rants

K170 Alternative accommodation facili-
ties

K171 Hotels L003 Hairdressing establishments
L023 Soaps and foam baths L040 Hair-care products
L055 Dental-care products L070 Beauty products and cosmetics
L100 Paper articles for personal hygiene L120 First aid material
L130 Personal care appliances, electric
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