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Abstract

Two Bayesian sampling schemes are outlined to estimate a K-state
Markov switching model with time-varying transition probabilities.
Data augmentation for the multinomial logit model of the transition
probabilities is alternatively based on a random utility and a difference
in random utility extension. We propose a definition to determine a
relevant threshold level of the covariate determining the transition
distribution, at which the transition distributions are balanced across
states. Identification issues are addressed with random permutation
sampling. In terms of efficiency, the extension to the difference in
random utility specification in combination with random permutation
sampling performs best. We apply the method to estimate a regime
dependent two-pillar Phillips curve for the euro area, in which lagged
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1 Introduction

Bayesian estimation of Markov regime switching models is by now well de-
veloped in the literature (Chib 1996, Frühwirth-Schnatter 2006, Sims et al.
2008) and many applications have proved the model to be useful in the anal-
ysis of economic data. Among many others, see the multivariate approaches
of Kim and Nelson (1998), Paap and van Dijk (2003), Hamilton and Owyang
(2012), Kaufmann (2010). Generally, the transition probabilities are assumed
to be exogenous, which represents a major critique addressed to Markov
switching models (and to models with exogenous break dates in general), as
they lack an explicit interpretation of the driving variables behind the switch-
ing process. Extensions to time-varying probabilities have usually focussed
on the restriction to two states and have been parameterized using a probit
specification (see Filardo 1994, Filardo and Gordon 1998). A multinomial
logit specification is adopted in Meligkotsidou and Dellaportas (2011) who
use recent derivations of auxiliary samplers for multinomial logistic models
(Holmes and Held 2006) to estimate hidden Markov models.

In the present paper, time-varying probabilities are also parameterized us-
ing a multinomial logit function which provides a mean to extend Bayesian
estimation to a K-state switching model in a straightforward way. Two
Markov chain Monte Carlo (MCMC) samplers are proposed to estimate the
model, both of which are based on data augmentation. The first one uses
the extension of the multinomial logit model to the random utility represen-
tation and the second one the extension to the difference in random utility
representation (Frühwirth-Schnatter and Frühwirth 2010). The advantage of
introducing the additional layers is that draws from the posterior distribution
of all parameters, including those driving the time-varying transition proba-
bilities, are obtained from full conditional posterior distributions. Hence, we
can rely on the Gibbs sampler while the alternative sampler of Holmes and
Held (2006) involves rejection sampling in the random utility representation
of the logit regression model. While parameter inference with both auxiliary
samplers is straightforward and easy, it turns out that the extension to the
difference in random utility representation is more efficient than the exten-
sion to the random utility model. Finally, note that although the samplers
are presented within a univariate framework here, the schemes can be read-
ily integrated in multivariate time series or panel data approaches like those
mentioned before.

The posterior inference of the model allows to discriminate the Markov
switching model against nested alternatives. A Markov switching model with
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constant, exogenous transition distribution is obtained if the parameters on
the covariate are restricted to zero. If the parameters governing the transi-
tion distribution do not depend on the previous state, we obtain a mixture
model with time-varying weights. In analogy to smooth transition models
(STAR, Teräsvirta and Anderson 1992) in which the threshold level is the
level of the covariate at which the state probability equals 0.5, we define a
threshold level for the covariate, at which the state transition distributions
are what we call balanced across states. We achieve this by defining the
threshold level as the one at which the divergence between the persistence
probabilities of states is minimized.

Another issue that we also address is identification, which is important to
obtain an unbiased estimate of the identified model, (Hamilton et al. 2007).
Regime switching models are not identified unless an ordering of the states is
provided. Finding a uniquely state-identifying restriction is often driven by
the investigation at hand. Nevertheless, there often are cases, in particular
in models including an increasing number of parameters to estimate, where
it is unclear a priori which coefficient may be used to uniquely identify the
states. The issue is addressed by using the random permutation sampler
(Frühwirth-Schnatter 2001) to first obtain an estimate of the unconstrained
posterior distribution, which also yields an inference about the presence of
Markov switching. Then the sample from the unconstrained posterior is
postprocessed to infer a uniquely state-identifying restriction. Meligkotsidou
and Dellaportas (2011) argue that identification is not an issue if the purpose
of investigation is forecasting. Nevertheless, one might be interested in ob-
taining state-dependent forecasts, if e.g. the states would represent different
macroeconomic scenarios, each of which would imply a state-specific policy
response. In that case, model identification would again be a prerequisite.

Additional literature most directly related to the present paper includes
Hamilton and Owyang (2012), who estimate US state-level recession clus-
ters. They model cluster association of US state-level employment growth
rates using a multinomial logit specification with four covariates. There is no
path-dependence in cluster association, however. Another approach to model
endogenous transition probabilities is presented in Billio and Casarin (2011),
who specify regime-specific Beta autoregressive transition distributions de-
pending on covariates like duration or past transition probabilities. A spec-
ification of time-varying transition probabilities depending on the strength
of a latent, continuous state variable has been proposed in Chib and Dueker
(2004). In Billio and Casarin (2010), endogenous transition probabilities
are latent Beta random variables. Change-point models (Chib 1998) with a

3



fixed number of regimes are nested in Markov switching models. Setting the
appropriate zero restrictions in the transition matrix yields a process with
switches to non-recurrent states. While Chib (1998) and Pesaran et al. (2007)
assume constant transition probabilities, Koop and Potter (2007) render the
approach more flexible by introducing a hierarchical prior for state duration
which induces duration dependent transition probabilities. Moreover, the
setup they pursue does not restrict the number of breaks to a predetermined
value. Most recently, Geweke and Jiang (2011) present a multiple-break
model in which the unknown number of break dates are indicated by a la-
tent Bernoulli variable, with exogenous probability distribution, however. A
logit specification of the break probability including explanatory covariates,
as pursued in the present paper, could also be integrated in their approach.

We apply the model to the two-pillar Phillips curve for the euro area in-
vestigated in Assenmacher-Wesche and Gerlach (2008). They regress the
quarterly inflation rate on the low-frequency components of M3 growth, real
GDP growth and the change in the government bond yield, and on the high-
frequency component of the output gap. They find that the coefficient on
the low-frequency components of M3 growth and real GDP growth are not
significantly different from 1 and -1, respectively. The low-frequency com-
ponent of the change in the government bond yield looses its significance
when the frequency band is shifted towards longer frequencies. The high-
frequency component of the output gap remains significant in all frequency
bands considered. This analysis confirmed the importance of M3 growth
as an indicator for inflation prospects. However, it turns out that the re-
lationship breaks down if the Phillips curve is estimated with shorter and
more recent data series running from 1983 to 2010, and renders inflation
nearly unpredictable – a pattern also present in US data (Stock and Watson
2007, Sargent and Surico 2011). Extending the setup to a Markov switching
framework recovers the relevance of the variables for inflation. Lagged credit
growth rate above a threshold level of 1.9% quarterly growth rate is esti-
mated to be indicative of switches to the state in which is the low-frequency
component of M3 growth and economic variables are significant for inflation.
This state is characterized by an increased volatility in quarterly inflation,
matched with, besides above trend M3 growth of credit, a trend M3 growth
rate staying at a relatively high level, being on an increasing or strongly
decreasing path.

The next section outlines the econometric model and discusses the parametriza-
tion of the transition distribution. Section 3 presents the MCMC sampling
scheme. In section 4 the estimation method is illustrated with simulated data
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and contains the efficiency evaluation of the RUM and dRUM auxiliary sam-
plers, each of which is implemented within the random and alternatively the
constrained permutation sampler. The application to the two-pillar Phillips
curve for the euro area is presented in section 5. Section 6 concludes. The de-
tailed RUM and dRUM auxiliary sampler for the parameters of the transition
distribution are found in appendix A. Appendix B describes the permutation
steps used in model identification.

2 The econometric model

2.1 Specification

The usual representation of a regime-switching model for a time series yt,
t = 1, . . . , T , is

yt = X ′
tβSt + εt (1)

εt ∼ i.i.d N(0, σ2) (2)

where Xt is a p×1 vector of explanatory variables which may include lagged
observations of yt if autoregressive dynamics are taken into account. The
parameter vector β is state-dependent, βSt = βk if St = k, k = 1, . . . , K.
In the general case, the variance of the error terms may also be subject to
regime changes, σ2

St
= σ2

k if St = k. The variance may even be driven by a
state variable that is independent of the state variable governing the param-
eter vector β. For expositional convenience, we drop this assumption. The
estimation of the model extended to state-dependent variances is straight-
forward. For completeness, we will discuss it in section 3, which outlines the
sampling scheme.

The state indicator St = k, k = 1, . . . , K, follows a first-order Markov pro-
cess. A usual critique to Markov switching models with exogenous transition
probabilities, in particular in macroeconomic applications, is the lack of an
explicit inclusion/interpretation of the driving variable(s) behind the switch-
ing process. The usual procedure is then to correlate the estimated state
probabilities to business cycle measures or to variables expected to influence
the regimes. One can also compute moments of the variables like the state-
dependent means and/or variances to characterize the estimated regimes.
Another avenue has been to set up a model for the transition probabilities
and to include explicitly the variables expected to influence them, which
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yields a model with time-varying transition probabilities. A covariate Z̃t

affecting the transition distribution of the state variable then, through βSt ,
indirectly influences the effect of a variable in Xt.

In the present paper, we will parameterize the time-varying transition prob-
abilities in what we call a centered way:

P (St = k|St−1 = l, Zt, γ) = ξlk,t =
exp (Ztγ

z
lk + γlk)∑K

j=1 exp
(
Ztγzlj + γlj

) , k = 1, . . . , K,

(3)
where the influence of the covariate is decomposed into two components.

Namely, the time-varying component
(
Z̃t − Z̄

)
γzlk, capturing the effect of

deviations from the mean in the first term and the mean effect Z̄γzlk entering
the second term γlk = γ̃lk + Z̄γzlk, which ultimately affects the time-invariant
average state persistence.1 The prior on γlk can then be specified jointly on all
time-invariant components of the transition distribution, those coming from
the truly exogenous part and those coming from mean effects of covariates.

For identification purposes, the parameters governing the transition to the
“reference” state k0, k0 ∈ K = {1, . . . , K}, are assumed to be zero,

(
γzlk0 , γlk0

)
=

0. This yields

P (St = k0|St−1 = l, Zt) =
1

1 +
∑

j∈K−k0

exp
(
Ztγzlj + γlj

) (4)

where K = {1, . . . , K} is the set of all states and K−k0 means all states but
the reference transition to state k0.

The reasons why we explicitly use the centered parametrization (3) are
twofold. First, it defines the average Z̄ as an (initial arbitrary) threshold
level. This is not restrictive, as we show below how the posterior estimate
of the model can be used to define a threshold level which would differ from
the average. Second, in the uncentered specification

ξlk,t =
exp

(
Z̃tγ

z
lk + γ̃lk

)
∑K

j=1 exp
(
Z̃tγzlj + γ̃lj

) =
exp

(
Z̃tγ

z
lk +

(
γlk − Z̄γzlk

))
∑K

j=1 exp
(
Z̃tγzlj + γ̃lj

) (5)

1The model can be generalized to include more than one covariate to influence the
transition probabilities. In that case Zt and γz

lk would be m × 1 vectors of variables and
of parameters, respectively. The product in the numerator and denominator would then
read Z ′

tγ
z
lk.
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the time-invariant part of the transition probabilities γ̃lk would reflect the
time-invariant part net of the mean effect of Z̃t. Formulating a prior on γ̃lk
is then not scale invariant with respect to Z̃t. In fact, only diffuse priors
might be appropriate in this parametrization given that γ̃lk might be a large
negative or positive number, depending on the sign of Z̃t (think of survey
indices which may take on only positive values). As already mentioned, using
the centered specification, we circumvent the problem in that we formulate
a prior on γlk which contains all time-invariant parts of the transition prob-
abilities.

Although we do not put any restrictions on γzlk, after estimation they should
reflect a property that we may think of as being reasonable in a Markov
switching process (see also the examples in subsection 2.3). When deviating
from zero (or another non-trivial threshold), the covariate Zt should increase
the dispersion in the persistence of the states, by e.g. increasing the switching
probability from state 1 to state 2 (decreasing the persistence of state 1) and
increasing the persistence of state 2. Thus, when K = 2, parameters in
γzk considerably shifted away from zero should be so in the same direction.
When K > 2, this property should at least be present between parameters
relating to two (past) states.

At first sight, the choice of using the logit specification in (3) instead of the
probit specification mostly used otherwise in the literature is purely a mat-
ter of personal preferences, and comes even at the cost of working with a
non-linear, non-normal model for the parameters. In this view, the probit
model seems more attractive because the latent utility specification yields a
linear normal model. This advantage against the logit specification, besides
the pro of the possibility to resolve the issue of independence of irrelevant
alternatives (IIA), is readily exploitable in models in which the state or clas-
sification indicator is known (Hausman and Wise 1978, Albert and Chib
1993, Nobile 1998, McCulloch et al. 2000), because the outcome probabili-
ties do not need to be evaluated to obtain an inference on the parameters.
However, when the state indicator is not known and is to be estimated, it
turns out that, after taking a second, a more general look (in particular for
K > 2), the probit specification is less trivial than expected at first sight. In
order to make an inference on the state indicator, the transition probabili-
ties have to be evaluated. In a K-state Markov switching model for a time
series of length T , this amounts to evaluate TK(K − 1) K − 1-dimensional
multivariate normal integrals (Nobile 1998). This is numerically feasible,
but computationally intensive and based on numerical methods introducing
approximation errors which propagate through time because of state depen-
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dence and directly bias likelihood evaluation. I view this computational
aspect as a major disadvantage of the probit specification for latent, in par-
ticular K > 2-state processes.2 Besides, the independent probit specification
used so far in applications of latent Markov switching models (see also Lu
and Berliner 1999 for an application to other than economic data) yields ap-
proximately the same odds structure among states as the logit specification
(Hausman and Wise 1978). Therefore, given the computational advantage in
evaluating the time-varying transition distributions and the recent advances
in Bayesian methods (Frühwirth-Schnatter and Frühwirth 2007 and 2010)
which render the estimation of multinomial logit models amenable to Gibbs
sampling, the logit specification overtakes the at-first-sight attractiveness of
the probit specification.

Nevertheless, the use of a fully specified probit specification for Markov
switching transition distributions remains a very interesting avenue for future
research, see e.g. Imai and van Dyk (2005). It is obviously conceivable that
one would like to introduce correlation among the probability of states which
are perceived to have similar characteristics. In such a way, their common
odds ratio against all other states would be the same as if only one of the two
states would be included in the set of possible alternatives. Note that the
latent ordered probit specification proposed in Kim, Piger, and Startz (2008)
might also provide a basis to design a posterior sampler. Ordered probit re-
duces the computational burden to the evaluation of TK(K − 1) integrals of
univariate rather than multivariate normals. However, using ordered probit
for Markov switching models implies a structure on the probit parameters
which is not obvious to implement.

2.2 Nested alternatives and a digression: Defining a
threshold

In the literature implementing time-varying transition probabilities (Filardo
1994, Amisano and Fagan (2010)) it is sometimes assumed that the effect of
the covariate is independent of the past state, which restricts γzlk = γzk . The
Markov dependence is then only governed by the time-invariant part γlk. If
the effect of the covariate is irrelevant, γzlk = 0, ∀l, k, we obtain a K-state

2So far, applications using the probit specification involving more than 2 states are
rare, if existent at all. On the other hand, some recent working papers (Billio et al. 2013
and Gaggl and Kaufmann 2014) refer to the method proposed in this paper to latent
K > 2-state switching processes.
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Markov switching model with constant transition probabilities.

If both γzlk = γzk and γlk = γk, ∀k, the time-varying state probabilities are
independent of the lagged prevailing state. The regime probability is then a
monotone function of Zt only:

P (St = k|Zt, γ) = ξkt =
exp (Ztγ

z
k + γk)∑K

j=1 exp
(
Ztγzj + γj

)
and we obtain a mixture model with time-varying weights.

Usually, threshold levels of covariates are not an issue in Markov switching
models. However, in addition to know about the sensitivity of the state
probabilities to changes in the covariate, it might equally well be of interest
at which level of the covariate the mass of the transition distributions is
critically shift towards one of the states. For instance, Amisano and Fagan
(2010) use the money growth as an indicator for the probability to switch
to a regime of high inflation. Knowing about the level of money growth at
which the persistence of or the probability to switch to the high-inflation
states increases critically, would be a useful information for policy makers.
In smooth transition models (Teräsvirta and Anderson 1992), the threshold
level is defined as the level of Zt at which the regime probability, define it φt

here, equals 0.5. We can re-parameterize the well-known transition function
to our notation (γz ̸= 0 holds throughout):

φt =
1

1 + exp (−γz (Zt − c))
or φt =

1

1 + exp (−γzZt + γc)
(6)

where γz represents the curvature or the steepness of the transition func-
tion, c is the threshold, and γc = γzc. From an estimate of the right-hand
parametrization, we can recover the threshold by solving (−γ̂zZt + γ̂c) = 0
for Zt: The solution is Zt = γ̂c/γ̂z. If Zt is mean-adjusted, as defined so far,
and γc is zero, the threshold is equal to the mean Z̄. If γc ̸= 0, the threshold
is Z̄ + γc/γz. In a sidestep, note that the mean of a covariate might serve
as a reasonable starting value for the threshold. The true one can then be
recovered from an estimate of the transition function as parameterized on
the right-hand side in (6).

From these considerations, we will now define a threshold for a covariate Z̃t

determining the transition distribution in a Markov switching model, where
states are characterized by their persistence and their switching probabilities.
Our definition is:
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Definition 1: The relevant threshold level of a covariate Z̃t which affects the
transition distribution of a Markov switching state variable is the level of
Z̃t at which the divergence between the persistence probabilities of states is
minimized.

To motivate the definition, assume K = 2. According to the definition, the
threshold level would be the level of Z̃t, at which the persistence of both states
is equalized. This represents a balanced situation where the probability to
remain in the prevailing state and the probability to switch to the other state
would be equal across the states. A deviation of Z̃t from that level renders the
transition distribution asymmetric across states and shifts probability mass
towards one of the states. In case K > 2, and depending on the parameter
constellations, it is highly probable that there is no level of Z̃t which will
equalize the persistence probabilities across states. In that case, we define
the threshold as the level of Z̃t at which the divergence across the persistence
of states is minimized. Finally, if we work with the mean-adjusted covariate
Zt, we apply Definition 1 to an estimate of (3). The obtained threshold level
is then added to the mean Z̄ to obtain the relevant threshold level of Z̃t.

To sum up, having obtained an inference on the posterior distribution of
the parameters governing the transition probabilities in (3), we may assess
whether the model could be restricted to one of the discussed alternative
parametrization. We may also deduce a threshold level for Z̃t, at which the
transition distribution is balanced and as symmetric as possible across states.

2.3 Some examples

To illustrate the various effects of the covariate on the transition distribution,
let us assume three scenarios for Zt, Zt ∈ {0, 0.3,−0.3}. Assume two states
for St, St = 1, 2 and state 1 to be the reference transition state. The model
(3) can be written as

ξl2,t =
exp (Z′

tγ2)

1 + exp (Z′
tγ2)

(7)

where Z′
t =

(
ZtD

(1)
t−1, ZtD

(2)
t−1, D

(1)
t−1, D

(2)
t−1

)
, with D

(j)
t = 1 if St = j and 0 oth-

erwise, j = 1, 2. The parameter γ2 has four elements, γ2 = (γz12, γ
z
22, γ12, γ22)

′.
The first two elements determine the state-dependent effect of the covariate
on the transition distribution to state 2. The last two elements, (γ12, γ22),
are the parameters governing the time-invariant transition distributions from,
respectively, state 1 and 2 in period t − 1 to state 2 in period t. Four dif-
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ferent settings for γ2 are assumed. In the first three, γ2 = (4, g,−2, 2)′,
g ∈ {0, 1, 4}, which yields an average persistence of 0.88 for each state. The
influence of the various settings on ξt is depicted in table 1. In the first row
where γ2 = (4, 0,−2, 2)′, we observe that Zt influences only the transition
distribution of state 1. When Zt is positive, the probability to switch to
state 2 increases from 0.12 to 0.31. Conversely, as soon as Zt would de-
crease, the persistence of state 1 would increase. In the second row where
γ2 = (4, 1,−2, 2)′, we observe that now an increase (a decrease) in Zt also
increases (decreases) the persistence of state 2. The two settings thus illus-
trate the property that the dispersion between state persistence is positively
related to deviations of the covariate from its mean (or threshold). In the
third row, γ2 = (4, 4,−2, 2)′, the effect of Zt is independent of the past pre-
vailing state and the transition probabilities are a monotone function of Zt

only. The changes in the persistence probabilities are then symmetric for
deviations of Zt from zero. The second last row contains the effects when
γ2 = (4, 4, 2, 2)′, which represents the setting where the state probabilities
are a monotone function of Zt only, without dependence on the past pre-
vailing state. For completeness, we add a parameter setting, in which the
effect of Zt goes into opposite directions for the state transition distributions.
We observe that this case would capture situations in which positive (neg-
ative) deviations of the covariate from its mean would render an economic
system more labile (inert), reflected in a decrease (an increase) in both state
persistence probabilities.

From these examples, we would argue that in macroeconomic investigations
the first three settings would be the most expected ones for Markov sitching
models with significantly time-varying transition probabilities. A relevant
covariate, in our view, would shift the mass of all (or most) transition distri-
butions towards the same state.

Figure 1 illustrates the nonlinear effect of the covariate on the persistence
probabilities of the states for the second, second last and last parameter
settings of table 1, respectively. Panel (a) depicts the effect on the state
persistence probabilities in the case we think is the most expected one in
macroeconomic analysis. Panel (a) and (c) illustrate that in all settings of
table 1 except for the second last one, the relevant threshold level according
to our definition would be zero. At that level, the persistence probabilities
are equal. They diverge, as Zt deviates from zero. In the second last setting,
and in fact also in the last one for equal parameters of opposite sign in γz

(in which case the lines in panel (c) would overlap), given our definition
the parameters would imply a threshold level of respectively Zt = −0.5 and
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Table 1: Time varying transition probabilities. Some examples for ξt =
P (St|St−1, Zt, γ), γ

′ = (γz12, γ
z
22, γ12, γ22)

γ′ = Zt = 0 Zt = 0.3 Zt = −0.3

(4,0,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.12 0.88

] [
0.96 0.04
0.12 0.88

]

(4,1,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.09 0.91

] [
0.96 0.04
0.15 0.85

]

(4,4,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.04 0.96

] [
0.96 0.04
0.31 0.69

]

(4,4,2,2)

[
0.12 0.88
0.12 0.88

] [
0.04 0.96
0.04 0.96

] [
0.31 0.69
0.31 0.69

]

(4,-2,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.20 0.80

] [
0.96 0.04
0.07 0.93

]
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Zt = 0.5, yielding a state probability of φt = 0.5.

3 MCMC Estimation

3.1 The likelihood and prior specification

To outline the estimation of model (1), we introduce the following nota-
tion. With the time subscript t we indicate observations as of period t, while
with the time superscript we indicate the entire history of observations up
to time t, i.e. yt = (yt, yt−1, . . . , y1), and similarly for X t, Zt, St. The regres-
sion parameters are gathered into the parameter vector β = (β1, . . . , βK),
where βk = (β1,k, . . . , βp,k), for k = 1, . . . , K. Finally, the parameters gov-
erning the transition probabilities are denoted by γ = {γk|k ∈ K−k0} with
γk = (γz1k, . . . , γ

z
Kk, γ1k, . . . , γKk). All model parameters are contained in

θ = (β, γ, σ2), and the extended parameter vector ψ = (θ, ST ) gathers the
model parameters and the unobservable state vector ST .

Conditional on the state vector ST , the complete data likelihood of the re-
gression model (1) is

L
(
yT |XT , ST , θ

)
=

T∏
t=1

f (yt|Xt, St, θ) (8)

with a normally distributed observation density

f (yt|Xt, St, θ) =
1√
2πσ

exp

{
− 1

2σ2
(yt −X ′

tβSt)
2

}
(9)

Conditional on γ and Zt, the prior density of the state vector factorizes

π
(
ST |ZT , γ

)
=

T∏
t=1

π (St|Zt, St−1, γ)π (S0) (10)

in which the prior distribution of the initial state π (S0) is assumed to be
uniform over the number of states: P (S0 = k) = 1/K.

To complete the setup, the prior distribution of the regression parameters,
the error variance and of the parameters governing the transition distribution
are assumed to be independent

π (θ) = π(β)π(σ2)π(γ) (11)
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Conditional on the state, we face a traditional piecewise linear regression
model and therefore, we may specify the usual normal-inverse Gamma prior
distributions for β and σ2, respectively:

π (β) =
K∏
k=1

π (βk) =
K∏
k=1

N (b0, B0) (12)

π
(
σ2
)

= IG (w0,W0) (13)

The prior specification in (12) assumes the state-dependent regression pa-
rameters to be independent of each other, and to follow a state-independent
prior distribution. This renders the prior invariant to state permutations and
allows to explore the full unconditional posterior distribution of the param-
eters using the random permutation sampler (Frühwirth-Schnatter 2001).

The logit specification for the transition probabilities in (3)-(4) allows to
assume a normal prior distribution for the parameter γ:

π (γ) =
∏

k∈K−k0

π (γk) =
∏

k∈K−k0

N (g0, G0) (14)

where also here, the equal specification across states renders the prior invari-
ant to state permutations.

Depending on the purpose of investigation, the researcher might render the
prior more informative with respect to the states. For example, there might
be situations where one would like to specify coefficients which might be
state-dependently negative or positive, i.e. to have different means b0k a pri-
ori. Or one would expect to have states with different persistence and tran-
sition distributions, reflected in state-dependent means g0k. On the other
hand, one might incorporate this information into the prior specification,
without explicitly assigning the information to a specific state. In that case,
an invariant prior might be obtained by construction:

π (β) =
1

K!

K!∑
j=1

K∏
k=1

N
(
b0ρj(k), B0ρj(k)

) K∏
k=1

N
(
g0ρj(k), G0ρj(k)

)
(15)

where ρj, j = 1, . . . , K!, represent all possibleK! permutations of {1, . . . , K}.
In this case, the sampler described below would include a Metropolis-Hastings
step to sample the coefficients. A straightforward proposal would be the
state-dependent normal priors with appropriately permuted moments. In the
present paper, we work with state-independent prior specifications, so we do
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not pursue this avenue here. The interested reader finds an application in
Kaufmann and Frühwirth-Schnatter (2002).

There might also be situations where the researcher explicitly wants to assign
state-dependent information to a specific state, e.g. in outlier detection anal-
ysis or when working with financial data typically having infrequent states of
high volatility and low persistence, see e.g. also (Wasserman 2000). In that
case, the prior will not be state-invariant any more. However, the random
permutation sampler might still be applied if well-separating state-dependent
information is not included for all coefficients. But then, the state-dependent
prior hyperparameters have to be permuted along with the state-dependent
parameters at the end of each iteration of the sampler.

3.2 The sampling scheme

The posterior distribution π
(
ψ|yT , XT , ZT

)
is obtained by combining the

prior with the likelihood

π
(
ψ|yT , XT , ZT

)
∝ f

(
yT |XT , ST , θ

)
π
(
ST |ZT , γ

)
π (θ) (16)

To obtain a sample from (16), we iterate over the following Markov chain
Monte Carlo sampling steps:
(i) Sample the state indicator from π

(
ST |yT , XT , ZT , θ

)
by multi-move

sampling
(ii) Sample the parameters governing the transition probabilities from

π(γ|ST , ZT ) based on data augmentation (Frühwirth-Schnatter and
Frühwirth 2010), taking into account the path-dependence implied by
the Markov structure in the logit transition distribution.
Compute ξt, the matrices of time-varying transition probabilities
which determine the posterior in (i)

(iii) Sample the remaining parameters p(θ−γ|ST , yT , XT )
(iv) Permutation step: Either randomly permute all state-dependent pa-

rameters to obtain a sample from the unconditional distribution,
or permute the state-dependent parameters according to a uniquely
state-identifying restriction.

Step (i) is by now standard in Bayesian MCMC methods. The way we
proceed is to adjust the multi-move sampler described in Chib (1996) to
the time-varying Markov structure in the transition probabilities, see e.g.
Frühwirth-Schnatter (2006), Algorithm 11.1 and 11.2.
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Step (ii) is based on data augmentation procedures proposed in Frühwirth-
Schnatter and Frühwirth (2010), the advantage of which are that, by condi-
tioning on two auxiliary latent variables, namely the utilities (or the utility
differences) and the mixture component indicators, the full conditional pos-
terior distribution of γ can be derived and drawn from in a Gibbs step. In
a first step, extending the model to the random utility model (RUM, Mc-
Fadden 1974) yields a non-normal model for so-called state-dependent latent
utilities,

Su
kt = Z′

tγk + νkt, ∀k ∈ K−k0 (17)

Su
k0,t

= νk0,t, for the identification restriction γk0 = 0, (18)

where Z′
t =

(
ZtD

(1)
t−1, ZtD

(2)
t−1, . . . , ZtD

(K)
t−1 , D

(1)
t−1, D

(2)
t−1, . . . , D

(K)
t−1

)
. The errors

νkt are i.i.d over k and t, and follow a Type I extreme value distribution.
Conditional on Su

kt, ∀k, t, we could sample γ from the posterior distribution
applying a Metropolis-Hastings algorithm and using a multivariate normal
proposal (Scott 2011). Frühwirth-Schnatter and Frühwirth (2007) introduce
an additional layer to approximate the density of νkt by a mixture of M
normal components (see Frühwirth-Schnatter and Frühwirth 2007, table 1).
Conditional on the components Rkt and the utilities Su

kt, the non-normal
model becomes conditionally linear

Su
kt = Z′

tγk +mRkt
+ sRkt

υkt, υkt i.i.d. N(0, 1), over k, t (19)

Assuming a normal prior for γk, the conditional posterior is also normal
γk ∼ N (gk, Gk), with

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−1
0

)−1

(20)

gk = Gk

(
T∑
t=1

Zt (S
u
kt −mRkt

) /s2Rkt
+G−1

0 g0

)
(21)

A second approach uses the extension to a difference in random utility model
(dRUM), i.e. expresses the differences in the latent utilities

skt = Z′
tγk + ϵkt, ϵkt ∼ Logistic, ∀k ∈ K−k0 (22)

where skt = Su
kt − Su

k0,t
and ϵkt = νkt − νk0,t. Therefore, the errors ϵkt are not

independent over k any more. Given that the parameters of the reference
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transition are zero, γk0 = 0, γk is the same as in (17). The model can further
be condensed to obtain the partial dRUM representation:

ωkt = Su
kt − Su

−k,t, D
(k)
t = I{ωkt > 0} (23)

= Z′
tγk − log (λ−k,t) + νkt − ν−k,t︸ ︷︷ ︸

=ϵkt

(24)

where Su
−k,t indicates the maximum value of all utilities excluding Su

k,t, S
u
−k,t =

maxj∈K−k
Su
jt, and the constant λ−k,t =

∑
j∈K−k

exp (Z′
tγj). Given that the

constant − log (λ−k,t) is independent of the coefficient γk, we obtain a linear
regression γk with logistic errors. The logistic error distribution can again
be approximated by a mixture of mean zero normal distributions with M
components, and conditional on the component Rkt, the non-normal model
becomes normal (see Frühwirth-Schnatter and Frühwirth 2010, table 1):

ω̃kt = ωkt + log (λ−k,t) = Z′
tγk + ϵkt, ϵkt|Rkt ∼ N

(
0, s2Rkt

)
(25)

Again, assuming a normal prior for γk, the posterior is normal γk ∼ N (gk, Gk),
with

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−1
0

)−1

(26)

gk = Gk

(
T∑
t=1

Ztω̃kt/s
2
Rkt

+G−1
0 g0

)
(27)

The interested reader finds a detailed derivation of the sampling scheme in
appendix A.

In step (iii), we further block the parameter vector into the regression vectors
β = vec(β1, . . . , βK) and σ

2. Conditional on data and ST , the posterior of β
is normal,

π (β) ∼ N (b, B)

B =

(
1

σ2
X̃ ′X̃ +B−1

0

)−1

b = B−1

(
1

σ2
X̃ ′y +B−1

0 b0

)
where the rows of X̃ are X̃t =

(
XtD

(1)
t , XtD

(2)
t , . . . , XtD

(K)
t

)
. If some pa-

rameters were not switching, we gather the variables with non-switching
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parameters in X1t and the ones with switching parameters in X2t. The cor-

responding rows of X̃ are then X̃t =
(
X1t, X2tD

(1)
t , X2tD

(2)
t , . . . , X2tD

(K)
t

)
.

The posterior of σ2 is inverse Gamma, IG (w,W ) with w = w0 + 0.5T and

W = W0 + 0.5
∑T

t=1

(
yt − X̃tβ

)2
. In case of state-dependent variances the

posterior would also be inverse Gamma IG (wk,Wk) with wk = w0 + 0.5Tk,

Tk =
∑T

t=1D
(k)
t and W = W0 + 0.5

∑T
t=1D

(k)
t (yt −X ′

tβk)
2

To motivate step (iv), note that the model (1) is not identified with respect
to the states. So, the likelihood in (8), L

(
yT |XT , ST , θ

)
, remains unchanged

with respect to any state permutation. Under an invariant prior, the posterior
will also be invariant to any state permutation ρ = (ρ1, . . . , ρK)

π
(
θ, ST |yT , XT , ZT

)
= π

(
ρ(θ), ρ(ST )|yT , XT , ZT

)
The investigator may choose one of two options to estimate an identified
model. The one most often pursued is to define a state-identifying restriction
based on one of the state-dependent coefficients. In the present case, one
could set a restriction on the regression coefficients or on the parameters
governing the transition distribution:

βj,1 < · · · < βj,K or γl1 < · · · < γlK , j ∈ {1, . . . , p}, l ∈ K−k0 (28)

Obviously, in case K > 2, one could also choose a combination of restrictions

βj,1 < min (βj,2, . . . βj,K) and γl2 < · · · < γlK (29)

In this case, each iteration would be terminated by re-ordering the state-
dependent parameters and the states to fulfill the restriction (constrained
permutation sampling) and by re-normalizing the parameters of the transi-
tion distribution to γk0 = 0.

If the investigator does not know a priori which parameter yields a unique
state-identifying restriction, she may sample from the unconditional posterior
by forcing the sampler to visit all posterior modes (random permutation
sampling, Frühwirth-Schnatter 2001). State-identification is then obtained
by post-processing the MCMC output. A unique state-identifying restriction
might be obtained from inspecting the multimodal marginal posteriors of the
state-dependent coefficients or by applying k-means clustering to all MCMC
iterations, see Frühwirth-Schnatter (2011). A detailed description of the
permutation steps is found in appendix B.
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4 Illustration and evaluation

4.1 Model estimation

To illustrate the usefulness of the sampling procedures outlined in the previ-
ous section, we first use simulated data. We assume an autoregressive process
yt to depend on two exogenous variables

yt = β1Stx1t + β2Stx2t + εt (30)

εt ∼ N
(
0, σ2

St

)
in which the state-dependent regression parameters are set to β1 = {0, 0.8}
and β2 = {0.2, 0.2}, and the state-dependent variances of the error terms to
σ2 = {0.05, 0.1}

The exogenous variables are drawn from independent normal distributions,
and the Markov switching process St is modelled to depend on a covariate
Zt generated by an autoregressive process:

x1t, x2t i.i.d. N (0, 1) (31)

Zt = 0.8Zt−1 + ηt, ηt i.i.d. N (0, 0.5) (32)

where the relative strong autoregressive process for Zt is chosen to induce
some persistence in the simulated Markov variable St. We shift Zt to induce a
threshold level different from zero. Assuming two states, K = 2, and k0 = 1,
the transition distribution writes:

ξk2,t =
exp (γzk2 (Zt − 0.5) + γk2)

1 + exp (γzk2 (Zt − 0.5) + γk2)
(33)

For the parameters we assume γz12 = 4, γz22 = 1 and γ12 = −2, γ22 = 2.
The specification reflects the property we think of being most intuitive in
macroeconomic applications of Markov switching models (see section 2.3).
When Zt is at its threshold, the values for γk2 correspond to a transition
probability matrix (see also table (1))

ξ =

[
0.88 0.12
0.12 0.88

]

We simulate 400 observations, T = 400, and use the last 200 to estimate
the model. In a first round, we work with Zt as covariate, given that

19



its mean is zero. We estimate the model assuming all parameters to be
state-dependent under quite uninformative prior specifications. We spec-
ify for βj,k π (βj,k) ∼ N(0, 1/4), for σk π (σk) ∼ IG(2, 0.25) and for γ2
π (γ2) ∼ N

(
[0, 0, −1, 1]′ , 6.25 · I4

)
. We estimate the model using alter-

natively random and constrained permutation sampling. In each case, the
parameters of the transition distribution are sampled using both alternatives
of the auxiliary sampling schemes. The last 20,000 iterations out of a total
of 50,000 under the RUM specification and out of 30,000 under the dRUM
specification are used to evaluate the posterior distribution. Fewer iterations
are needed in the latter case due to faster convergence and higher efficiency
(see below).

Before comparing the various estimation methods, we discuss the results of
the ultimately preferred procedure in terms of efficiency: Random permuta-
tion with dRUM auxiliary sampling of the transition distribution parameters.
Given that the sampler is forced to visit both modes of the posterior, the
marginal posterior densities of the state-dependent parameter (β1,k and σ2

k)
in figure 2, panel (a), are bi-modal and overlap for k = 1, 2. For γzk2, random
permutation brings about bi-modality with one mode at zero as the base
category also switches between the two states. The scatter plots in figure 3,
which plot the simulated regression parameters against the simulated con-
stant transition parameters γk2, convey the same information. Obviously,
β1,k is switching between states, while β2,k is apparently state-independent.

To obtain state-identification, we may re-order the simulated values according
to the state-identifying restriction β1,1 < β1,2 and normalize the parameters
of the transition distribution choosing k0 = 1 (see permutation scheme (58) in
appendix B). The result of the identification step for the marginal posterior
distributions is plotted in figure 2, panel (b). The re-ordered draws for β1,k
are plotted in figure 3 in the right panel. The panel plots all draws inclusive
of the burn-in and we observe that the sampler converges quite quickly.

The plots in figure 4 show different views on the threshold value determined
by Definition 1 using the sampled values of the transition distribution pa-
rameters. The boxplot in the left panel reports a median estimate of 0.37
with a 95% highest posterior density interval ranging between 0.18 and 0.60.
The right panel plots Z̃t against ξ

(m)
11,t and ξ

(m)
22,t implied by the simulated val-

ues for γ
(m)
2 . The green dots plot the implied threshold level against the

corresponding persistence probability of state one ξ
(m)
11,t .
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4.2 Efficiency evaluation

The various sampling designs are compared in evaluating their inefficiency
in sampling the parameters of the transition distribution, γ. The inefficiency
measure (Geweke 1992) relates the variance of a hypothetical i.i.d. sampler
to the sampling variance. We estimate the ratio by dividing the squared
numerical standard error (an estimate of the sampling variance at frequency
zero) by the posterior sampling variance of γ, σ̂2

γ. The square of the numerical
standard error is estimated taking into account serial dependence in the
sampled values:

Ŝ(0) = Ω0 + 2
J∑

j=1

(
1− j

J + 1

)
Ωj

where Ωj is the autocovariance for lag j. For the measures summarized
in table 2, we set J = 2000. Moreover, the measures are scaled by the
number of retained iterations. We either retain all of the last 20,000 iterations
or retain every 4th iteration to remove some of the autocorrelation, which
leaves us with 5,000 iterations in that case. For expositional convenience,
the inefficiency factors reported in table 2 are multiplied by 100.

We observe that random permutation with auxiliary sampling based on the
dRUM specification shows the best performance (last two columns, top two
panels). The output of the random permutation sampler shows virtually
the same inefficiency irrespective of whether we use all iterations or only
every 4th one. Working with every 4th iteration in the identified model,
removes considerably autocorrelation in the simulated values (see figure 5),
the inefficiency is roughly halved. This is not the case for the constrained
permutation sampler, where inefficiency does markedly decrease only for two
parameters if we retain every 4th observation. Auxiliary sampling based
on the dRUM strongly outperforms auxiliary sampling based on the RUM
(see also Frühwirth-Schnatter and Frühwirth (2010) for further comparisons).
The inefficiency factor increases by a factor of (at least) 10 if we use the
random permutation sampler. The increase in inefficiency is not as strong
if we use the constrained permutation sampler. Nevertheless, the differences
are considerable.

The results about the inefficiency factors are mirrored in the autocorrelation
functions (ACF) of the sampled values for γ. Figure 5 plots the ACFs for
the various MCMC outputs. The pictures document again the superiority
of the random permutation sampler with dRUM auxiliary sampling. The
autocorrelation function drops very quickly to zero for all parameters in the

21



randomly permuted MCMC output. Retaining only every 4th iteration in the
identified model also removes considerable autocorrelation in the simulated
values. The same applies to constrained permutation sampling. The consid-
erable inefficiency of RUM auxiliary sampling is revealed in the high and very
slowly decreasing autocorrelation functions. In the case of constrained per-
mutation, the posterior sample has to be thinned out considerably to remove
correlation.

5 Application: The two-pillar Phillips curve

We apply the model to the same setting as in Assenmacher-Wesche and
Gerlach (2008), who estimate an empirical, so-called two-pillar Phillips curve
for the euro area:

πt = β0,St + β1,St∆m̃t + β2,St∆R̃t + β3,St∆ỹt + β4,St ŷt +

p∑
j=1

ϕj,Stπt−j + εt

εt ∼ i.i.d N(0, σ2
St
) (34)

where πt represents the quarterly rate of inflation, ∆mt, ∆Rt and ∆y are
M3 growth, the change in the government bond yield, and GDP growth, re-
spectively. The tilde indicates that the long-run component of the respective
variables enters the regression, while the hat on the output gap indicates its
cyclical component. Up to p autoregressive terms are included to take into
account dynamics.

Assenmacher-Wesche and Gerlach (2008) extended the traditional Phillips
curve with money growth as explanatory variable to motivate its importance
in determining the inflation rate, in particular the long-run prospects of in-
flation. The specification of the empirical Phillips curve captures the notion
that long-run or low-frequency components of inflation are determined by
low-frequency nominal (trend M3 growth, trend change in bond yield) and
real components (trend GDP growth), its high-frequency components are
determined by the high-frequency (cyclical) component of the output gap.

In a companion paper, Assenmacher-Wesche and Gerlach (2007) estimate
this empirical two-pillar Phillips curve for the US, the UK and Japan. They
find significant evidence for the frequency-components determination of the
inflation rate in all countries, with the only exception for the low-frequency
component of output growth in the UK. Both papers contributed to the
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discussion surrounding the first evaluation of the European Central Bank’s
two-pillar monetary policy strategy, which lead to a re-ordering of the first
and second pillar, the so-called, respectively, monetary pillar and the eco-
nomic pillar (ECB 2004). Although repeatedly, investigations based on ei-
ther cross-section data (De Grauwe and Polan 2005) or country-specific data
(De Santis et al. 2013, Sargent and Surico 2011) documented instabilities in
money demand functions, the role of money in monetary policy and it use in
inflation forecasting has remained highly debated in the euro area between
the profession and academia (ECB 2008). Revisiting the two-pillar Phillips
curve adds to the discussion, as it turns out that the significant link between
the low frequency components of money growth and inflation evidenced in
Assenmacher-Wesche and Gerlach (2008) deteriorates if shorter data series –
starting in the early 80s rather than back in the 70s – are used to estimate
equation (34). This evidence fits the results presented in Sargent and Surico
(2011), who show that the link between US money growth and inflation is
insignificant since 1984, a period during which inflation has stabilized at low
levels. However, with the use of a structural model, they also show that
the link might reappear any time if monetary policy were to depart from its
response rule which puts a relatively large weight on inflation.

The following results also put into perspective the deterioration of the euro
area two-pillar Phillips curve estimates obtained with a shorter data sample.
We present three estimations of equation (34). The first estimate reproduces
the results of Assenmacher-Wesche and Gerlach (2008), obtained using the
long observation sample covering the period 1970-2010. The second estimate
uses the data sample beginning in 1983, and yields evidence that the signif-
icance of all variables but trend M3 growth deteriorates. Nevertheless, also
the importance of M3 growth apparently diminishes. In the third estimate,
we allow for regime-specific parameters. It turns out that the results for one
regime are very similar to those obtained for the linear specification. The
results for the other regime recover, besides a considerable effect of trend M3
growth, the significance of trend GDP growth and the cyclical output gap.
These periods are often lead by periods during which loan growth is persis-
tently above trend money growth (see figure 11 below). This, and because
loans are one counterpart of money, motivates why we include lagged credit
growth as a covariate in the transition distribution between states. We ob-
tain evidence that in particular the probability to switch to state 2 increases
considerably when the quarterly credit growth rate is above 1.9%.

We first describe how the data are compiled, before discussing the results.
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5.1 Data

Most data are retrieved from the statistical website of the European Central
Bank. To obtain longer data series where necessary, we use published data
on the euro area wide model and chain time series backwards by growth
rates. Proceeding this way, we obtain long quarterly data series for real
GDP, the harmonized index of consumer prices (HICP), and the government
bond yield. They cover the period from the first quarter of 1970 to the first
quarter of 2010. The historical loan series starts only in 1983. Therefore,
the model estimated with time-varying transition probabilities will use data
from 1983 onwards. This can also be seen as an advantage, as we can assess
whether the estimate of the two-pillar Phillips curve for long time series is
robust when only more recent data are available.

To obtain the low- and high-frequency components of time series, we use
the HP-filter rather than extraction by frequency bands. One advantage is
that no observations are lost, in particular at the end of the sample, which
may be of interest if the model is used for forecasting. Moreover, comparing
the extracted HP-trend with the component extracting frequencies longer
than 6 years, reveals no large differences between the series. As an example,
see figure 6 in which the low-frequency and the HP-trend of M3 growth are
depicted. The HP-trend shows less volatility, but basically, both time series
feature the same dynamics.

5.2 Results

All estimations are based on 150,000 draws from the posterior distribution,
discarding the first 25,000 ones to remove dependence on initial conditions.
To remove some of the autocorrelation in the draws, we retain every 10th
one for posterior inference. To estimate the switching specification, we use
the random permutation sampler described in section 3, and base data aug-
mentation on the dRUM extension. State identification is obtained by post-
processing the MCMC output, by re-ordering the sampled values according
to a state-identifying restriction.

We work with rather uninformative prior specifications, setting b0 = 0, B0 =
0.25 for the regressors’ coefficients and B0 = 0.09 for the autoregressive
coefficients. The latter specification determines the 95% interval for the
autoregressive coefficients to cover the interval (−0.6, 0.6). We might also
work with a more uninformative prior and truncating it to the stationarity
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region. Note however, that with the present data, even when working with a
more uninformative prior, sampling from the posterior of the autoregressive
coefficient has not to be restricted as the sampled value lie within the unit
circle.

The prior for the error variances is specified with w0 = 5 and W0 = 0.25.
Finally, to obtain an intuition how to specify the prior for the coefficients of
the transition distribution, we first estimate the model without prior infor-
mation. The resulting posterior distributions are rather vague, but indicating
that the posteriors are shifted away from zero by around 5 units. Therefore,
for the final estimate, we specify g0 = (0, 0, −1, 1)′, G0 = diag(25, 25, 1, 1)
for γ = (γz12, γ

z
22, γ12, γ22)

′.

5.2.1 Baseline estimation

The results of the baseline estimation are depicted in the first column of
table 3. In parentheses, we report the 95% highest posterior density in-
terval (HPDI) on the first line and the one-sided P-value of zero on the
second line. Basically, we can reproduce the results of Assenmacher-Wesche
and Gerlach (2008), even using HP- rather than frequency filtered data. In
particular, trend M3 growth and the cyclical output gap are significantly
positive. Taking into account the dynamics, the mean long-run effects of the
variables amount to 0.75 and 0.35 for trend M3 growth and the cyclical out-
put gap, respectively. A unit long-run effect of trend M3 growth lies in the
95% HPDI, which corresponds to the estimates presented in Assenmacher-
Wesche and Gerlach (2008). In contrast to Assenmacher-Wesche and Gerlach
(2008) however, we do not find a significant coefficient on trend GDP growth,
and the estimate on the trend in the change of the government bond yield is
positive (0.48).

When the estimation sample is restricted to begin in 1983, all the coeffi-
cients but the one on trend M3 growth turn insignificant. Trend M3 growth
looses some of its long-run importance, given that the 95% HPDI does not
include a unit coefficient anymore. GDP looses its significance at all, given
that the effect of the cyclical output gap looses becomes insignificant. The
trend change in the bond yield now obtains the expected sign, but looses its
significance, too. Without going deeper into the analysis to find a structural
reason for the changes in the parameter estimates, we nevertheless note that
the results match those reported on decreased inflation predictability in the
US. Stock and Watson (2007) show that the time series properties of infla-
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tion have changed after the mid 80s. According to their results, the variance
share attributed to the permanent component in inflation has considerably
decreased after 1983, the period when the Fed’s policy became increasingly
forward-looking and strongly reactive to inflation developments (see also Be-
nati and Surico 2008).

5.2.2 Regime switching with time-varying transition distribution

In the switching specification, we assume all variables and the error variance
to be state-dependent. The output of the random permutation sampler is
depicted in figure 7. All coefficients, but the one on the government bond
yield appear to be state-dependent.3 We continue working with this spec-
ification and identify the states by k-means clustering, using the simulated
values fulfilling all of the following restrictions (see the permutation steps in
(57)):

β11 < β12, β21 < β22, β41 < β42, ϕ11 > ϕ12 (35)

which defines state 2 as the one with a stronger effect of trend M3 growth,
trend GDP growth and of the cyclical output gap on inflation. At the same
time, state 2 has a lower autoregressive coefficient, in fact changes from pos-
itive to negative. The marginal posterior distributions of the state-identified
parameters are depicted in the figures 8 and 9. The right-hand plot in figure
9 shows that the posterior of γz is shifted considerably away from zero, tak-
ing into account the diffuse prior we work with. Lagged credit growth thus
affects the transition distribution of the state variable. We also see this in the
first panel of table 4 where the one-sided P-value of 0 indicates significance
at the 10% level of lagged credit growth in the transition distribution. The
upper left panel in figure 10 presents boxplots of the parameter estimates in
the transition distribution. In particular for γz, both 99% intervals include
zero and the interval for γz22 encompasses the one of γz12. This motivates a
closer evaluation of these parameters.

The second panel in table 4 reports the log Bayes factor for various restriction
sets on these parameters. Given that the restrictions are nested in the general

3The extension to three states, the results of which are available upon request, revealed
that only two modes characterize the posterior distributions of the regression parameters
and that the mean posterior state probabilities of one of the three states were lower than
0.5 over the whole observation period. This evidence confirms the two state specification.
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model, we obtain these by evaluating the Savage-Dickey density ratio:

logBF (M0|M) = log
π
(
γz|yT , XT , ZT

)
|γz=0

π (γz) |γz=0

Because a relatively diffuse prior advantages the posterior odds of zero coef-
ficients, the table reports the log Bayes factor obtained for models estimated
with increasingly informative priors on γz. The three remaining panels in
figure 10 depict the effects that an increasingly informative prior has on the
posterior update for γz. From table 4 we observe that increased prior infor-
mation deteriorates the posterior odds of zero coefficients, both for the single
and the joint evaluation. Although the numbers do not clearly favour a spec-
ification, they nevertheless turn negative, the most negative for the joint zero
restriction. Interestingly, the log Bayes factor for equal coefficients, γz12 = γz22,
derived from an evaluation implied by the joint prior and posterior distribu-
tions, remains positive, without clearly favouring a specification, either.

The posterior inference on the state-dependent parameters and the poste-
rior state probabilities does not change significantly if we restrict the effect
of lagged credit growth to be state-independent in the transition distribu-
tion. Therefore, in the following we report the results obtained for the state-
dependent covariate effects. The posterior inference on the state-identified
parameters is summarized in the last two columns of table 3. Comparing the
results with the ones of the linear specification for the shorter data sample,
we observe that results for regime 1 are very similar to the ones obtained with
the linear specification. As already mentioned, these results match those for
the US on decreased inflation predictability since the mid 80s. Trend M3
growth is the only marginally relevant variable for inflation, although the
effect is considerably lower than estimated for the longer sample covering the
years since 1970. This fits the evidence presented for the US in Sargent and
Surico (2011). In regime 2 however, trend GDP growth and the cyclical out-
put gap are significant determinants of inflation. On impact, in this regime,
trend M3 growth also has a stronger effect on inflation than in regime 1.
Even the unit coefficient is included in the 95% HPDI.

Figure 11 depicts the mean posterior probabilities of state 2, P
(
St = 2|yT , XT , ZT

)
.

Preceding each longer lasting episode during which state 2 has been relevant
– from 1988 third quarter, 2000 second quarter and 2007 fourth quarter on-
wards –, quarterly loan growth increased to levels above 1.9% – the threshold
level composed of an average loan growth rate of 1.7% and of 0.2% inferred
according to Definition 1 of subsection 2.2. In all these periods, inflation gets
more volatile (see figure 9, left panel) and reaches peak levels during the first
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two periods and a historical trough in the last period. This increased volatil-
ity in the inflation rate might be the reason why the close link between trend
M3 growth and inflation is unmasked during these periods. Indeed, when
state 2 prevails, trend M3 growth is either at a relatively high level (first pe-
riod), is on an increasing path (second period) or is sharply decreasing (third
period). On the other hand, when state 1 is prevailing, corresponding to
periods during which loan growth remained subdued relatively to trend M3
growth, inflation displays a low volatility and is either decreasing or remain-
ing at a low levels. These are typically the periods in which the relationship
between trend M3 growth and inflation might be masked and, moreover,
render inflation less predictable (Benati and Surico 2008).

The importance of loan growth as a signal for regime changes is also reflected
in figure 12. The figure plots the median posterior transition probabilities,
and we observe that the persistence of state 1 decreases below 0.8 and the
persistence of state 2 increases nearly to unity in particular ahead of state 2
periods mentioned above.

6 Conclusion

The present paper proposes to use a multinomial logit model to parameter-
ize a K-state regime switching process with time-varying transition distri-
bution. To derive a Bayesian sampling scheme, the multinomial logit model
is extended to a random utility and a difference in random utility model.
In a second layer, the non-normal but linear models are approximated by
mixture of normals to derive the full conditional posterior distributions of
the coefficients governing the transition distributions. Identification issues
are addressed with the random permutation sampler, which, in combination
with the model extension to the difference in utility model, performs best in
terms of efficiency.

The model estimate can be used to discriminate the Markov switching speci-
fication with time-varying transition probabilities against related alternatives
like Markov switching models with constant transition distribution or mix-
ture models with time-varying weights. We give a definition to determine a
relevant threshold of the covariate influencing the transition distribution.

The method is applied to estimate the empirical two-pillar Phillips curve
for the euro area (Assenmacher-Wesche and Gerlach 2008), in which the
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trend components of M3 growth, real GDP growth and of the government
bond yield change, and the cyclical component of the output gap are the
explanatory variables for headline inflation. Using the nonlinear specification
for quarterly data covering the period 1983 to 2010, we are able to recover
first evidence provided for data series going back to the 1970s, which would
not be the case using the original linear specification.

Although the sampling scheme is derived within the univariate framework, it
readily can be included in multivariate approaches like vector autoregressive
systems or panel data analysis.
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A Auxiliary mixture sampling of γ

Given that so far regime switching models with time varying probabilities
usually have been parameterized using the probit distribution (Filardo 1994,
Filardo and Gordon 1998), we derive in detail the two sampling schemes for
the logit model (3)-(4). Basically, step (ii) of the sampling scheme outlined
in section 3 consists of three sub-steps. The derivations follow (Frühwirth-
Schnatter and Frühwirth 2010) and are adjusted to the path-dependent struc-
ture of the Markov specification.

A.1 Data augmentation for RUM

In the following, the three sampling steps leading to a draw from π
(
γ|ST , ZT

)
,

step (ii) in section 3.2, are described in more detail.

Step (ii.a): Sample the utilities Su
kt from π

(
Su,KT |ST , γ

)
=
∏T

t=1 π
(
Su
1t, . . . , S

u
Kt|ST , γ

)
To sample the utilities

Su
kt = Z′

tγk + νkt, ∀k ∈ K−k0 (36)

Su
k0t

= νk0t, implied by the identification restriction γk0 = 0,

conditional on the state variable ST , we first note that the maximal utility
should obtain for the observed state,

Su
jt = max

k∈K
Su
kt, if St = j

Therefore, exp
(
−Su

jt

)
is the minimum value among all values exp (−Su

kt) and

exp
(
−Su

jt

)
∼ E

(
K∑
k=1

λkt

)
(37)

where E represents the exponential distribution and λkt = exp (Z′
tγk).

4

4The exponential distribution is implied by the Type I extreme value distribution of νkt
and from the fact that the minimum of exponentially distributed variables follows again
an exponential distribution:

exp (−Su
kt) ∼ E (λkt) ,

min
k∈K

exp (−Su
kt) ∼ E

(
K∑

k=1

λkt

)
,
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Given the minimum, all other utilities are conditionally independent and the
posterior factorizes:

π (Su
1t, . . . , S

u
Kt|St = j, γ) = π

(
Su
jt|St = j, γ

) ∏
k∈K−j

π (Su
kt|St = j, γ) .(38)

The distribution π
(
Su
jt|St = j, γ

)
is given by (37) and implies

exp (−Su
kt) = exp

(
−Su

jt

)
+ χkt, χkt ∼ E (λkt) , ∀k ∈ K−j (39)

for π (Su
kt|St = j, k ̸= j, γ). To sample Su

kt for each t = 1, . . . , T , we sample
K independent uniform random numbers Wt and V2t, . . . , VKt and obtain:

Su
kt = − log

(
− log (Wt)∑K

l=1 λlt
− log (Vkt)

λkt
I{St ̸=k}

)
(40)

Step (ii.b): Sample the components Rkt from π
(
RKT |Su,KT , γ

)
Conditional on Su

kt, the component indicator Rkt is sampled from:

P (Rkt = r|Su
kt, γk) ∝

wr

sr
exp

{
−1

2

(
Su
kt − Z′

tγk −mr

sr

)2
}
, k ∈ K−k0 (41)

where r = 1, . . . , 10, and the respective component’s mean mr, standard de-
viation sr and weight wr, are taken from Frühwirth-Schnatter and Frühwirth
(2007), Table 1.

Step (ii.c): Sample γ from π
(
γ|Su,KT , RKT

)
Finally, given all utilities Su,KT = (Su

11, . . . , S
u
K1, . . . , S

u
KT ) and all component

indicators RKT = (R11, . . . , RK1, . . . , RKT ), we obtain a linear regression
model for the parameters governing the transition probabilities to each state
k, k ∈ K−k0 :

Su
kt = Z′

tγk +mRkt
+ sRkt

υkt, υkt ∼ N(0, 1) (42)

Assuming a normal prior for γk, π (γk) = N(g0, G0), conditional on Su,KT

and RKT the posterior is normal, too:

π
(
γk|Su,T

k , RT
k

)
= N (gk, Gk) , ∀k ∈ K−k0 (43)

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−1
0

)−1

(44)

gk = Gk

(
T∑
t=1

Zt (S
u
kt −mRkt

) /s2Rkt
+G−1

0 g0

)
(45)
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A.2 Data augmentation for the dRUM

The steps described in the following yield a draw from π
(
γ|ST , ZT

)
based

on the dRUM representation.

Step (ii.a): Sample the utility differences from
π
(
ωKT |ST , γ

)
=
∏

k∈K−k0
π
(
ωk1, . . . , ωkT |ST , γ

)
The dRUM extension expresses the multinomial logit model as differences in
the latent utilities (36)

skt = Z′
tγk + ϵkt, ϵkt ∼ Logistic, ∀k ∈ K−k0 (46)

where skt = Su
kt − Su

k0t
and ϵkt = νkt − νk0t. Given that the parameters of the

reference transition are zero, γk0 = 0, γk is the same as in (36). Working with
this representation would be quite involving because, in contrast to the error
terms νkt in (36), the error terms ϵkt in (46) are not independent any more
across states. Therefore, Frühwirth-Schnatter and Frühwirth (2010) consider
a partial representation of the dRUM model, which relies on the observation
that

St = k ⇔ Su
kt > Su

−k,t, S
u
−k,t = max

j∈K−k

Su
jt (47)

i.e. that state k is observed if Su
kt is larger than the maximum of all other

utilities. For all states but the reference state we define the latent difference
utilities ωkt and the binary observation D

(k)
t :

ωkt = Su
kt − Su

−k,t, D
(k)
t = I{St = k}, ∀k ∈ K−k0 (48)

Given the multinomial logit model for St, ωkt has an explicit distributional
form. Recall that (see footnote 4)

exp
(
−Su

−k,t

)
∼ E

 ∑
j∈K−k

λjt

 (49)

where λjt = exp (Z′
tγj) and define λ−k,t =

∑
j∈K−k

λjt. We then can write

Su
−k,t = log (λ−k,t) + ν−k,t, where ν−k,t follows an EV distribution. Thus, the

multinomial logit model has the partial dRUM representation

ωkt = Su
kt − Su

−k,t = Z′
tγk − log (λ−k,t) + νk,t − ν−k,t

= Z′
tγk − log (λ−k,t) + ϵk,t, D

(k)
t = I{St = k} (50)

where νk,t and ν−k,t are i.i.d. and follow an EV distribution, and ϵk,t follows a
logistic distribution. The constant − log (λ−k,t) in (50) depends only on the
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parameters γ−k. Therefore, given ωT
k = (ωk1, . . . , ωkT ) and γ−k, we obtain a

linear regression with parameter γk and logistic errors.

The sub-sampling steps can now be outlined explicitly. For each state k,
we first sample the latent utility differences ωT

k from logistic distributions.5

Across k, we sample independently T values Wkt from a uniform distribution
Wkt ∼ U [0, 1] and obtain

ωkt = Z′
tγk − log (λ−k,t) + F−1

ϵ

(
D

(k)
t +Wkt

(
1−D

(k)
t − πkt

))
(51)

where πkt = P
(
D

(k)
t = 1|γ

)
= 1−Fϵ (−Z′

tγk + log (λ−k,t)) ∝ λkt/λ−k,t; Fϵ (p)

represents the cumulative distribution function of the logistic distribution,
and F−1

ϵ (p) = log (p)− log (1− p) its inverse.

Step (ii.b) Sample the components RKT from π
(
RKT |ωKT , γ

)
Given ωKT , the posterior of γk is derived based on (50), approximating the
logistic distribution of the errors ϵkt by a mixture of normal distributions
with M components. The components Rkt are drawn from a multinomial
distribution

P (Rkt = r|ωkt, γk) ∝
wr

sr
exp

{
−1

2

(
ωkt + log (λ−k,t)− Z′

tγk
sr

)2
}

(52)

where r = 1, . . . , 6, and the respective component’s standard deviation sr
and weight wr, are taken from Frühwirth-Schnatter and Frühwirth (2010),
Table 1.

Step (ii.c): Sample γ from π
(
γ|ωKT , RKT

)
Conditional on the components RT

k , model (50) becomes normal in γk:

ω̃kt = ωkt + log (λ−k,t) = Z′
tγk + ϵkt, ϵkt|Rkt ∼ N

(
0, s2Rkt

)
(53)

Assuming a normal prior for γk, π (γk) = N(g0, G0), conditional on ω
T
k and

RT
k the posterior is normal, too:

π
(
γk|ωT

k , R
T
k

)
= N (gk, Gk) (54)

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−1
0

)−1

(55)

gk = Gk

(
T∑
t=1

Ztω̃kt/s
2
Rkt

+G−1
0 g0

)
(56)

5ωkt|ST , γk follows a logistic distribution truncated to [0, ∞) if St = k, and truncated
to (−∞, 0] if St ̸= k.
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B Model identification

A more detailed description of the permutation step (iv) in the sampling
scheme outlined in section 3.2 is given here, because the multinomial logit
specification of the transition probabilities has a path-dependent structure,
i.e. depends not only on the current state but also on the past state. Identi-
fication in mixture of experts models has also been considered in Frühwirth-
Schnatter et al. (2012), without path dependence in the logit classification
distribution, however.

Using the constrained permutation sampler, the sampled values are re-ordered
after each iteration according to the state-identifying restriction

for the state-dependent parameters and the states

β
(m)
k := β

(m)
ρ(k), S

T,(m) := ρ(ST,(m))

for the state-dependent transition parameters (57)

γ̃
(m)
k :=

(
γ
z(m)
ρ(k),ρ(k)γ

(m)
ρ(k),ρ(k)

)
, with γ1 = 0

γ
(m)
k := γ̃

(m)
k − γ̃

(m)
1

For example, in case K = 2, for γ this would amount to:

γ =


0 γz12
0 γz22
0 γ12
0 γ22

 , γ̃ :=


γz22 0
γz12 0
γ22 0
γ12 0

 , γ :=


0 −γz22
0 −γz12
0 −γ22
0 −γ12


Note that the normalization γk := γ̃k− γ̃1 is important here to keep the same
reference state across simulations. If random permutation sampling is chosen
to visit all modes of the posterior, the states, the state-dependent parameters
are randomly permuted in step (iv) of the sampler. For a given permutation
ρ at iteration m, we permute:

the state-dependent parameters and priors, states

β
(m)
k := β

(m)
ρ(k), S

T,(m) := ρ(ST,(m))

state-dependent transition parameters (58)

γ
(m)
k :=

(
γ
z(m)
ρ(k),ρ(k)γ

(m)
ρ(k),ρ(k)

)
, with γk0 = 0

In this case, the normalization takes place after post-processing the MCMC
output, i.e. after re-ordering the sampled values according to a restriction:

γ
(m)
k := γ

(m)
k − γ

(m)
k0

, ∀k
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Note that, if state-dependent priors are specified, the hyperparameters have
to be permuted accordingly.

C Tables

Table 2: Simulated data. Inefficiency factors for γ. Scaled by the number
of retained iterations, and multiplied by 100 for expositional convenience.
The autocovariance at zero frequency is estimated taking into account 2,000
autocovariances.

Auxiliary sampling based on
RUM dRUM

Iterations retained Iterations retained
Random permutation: all(a) every 4th all(b) every 4th
– unidentified model γz12

γz22
γ12
γ22

0.24
0.51
0.22
0.28

0.16
0.56
0.15
0.37

0.02
0.04
0.02
0.03

0.01
0.01
0.01
0.01

– identified model γz12
γz22
γ12
γ22

6.18
2.48
6.49
1.11

7.31
1.61
9.03
0.63

0.62
0.20
0.58
0.11

0.36
0.12
0.32
0.05

Constrained permutation all every 4th all every 4th
– identified model γz12

γz22
γ12
γ22

3.22
2.40
3.93
1.21

4.51
1.31
5.93
1.79

0.97
0.33
0.96
0.18

0.57
0.33
0.53
0.19

(a) The last 20,000 of a total of 50,000 iterations.
(b) The last 20,000 of a total of 30,000 iterations.
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Table 3: Two-pillar Phillips curve. Posterior mean effects. 95% highest
posterior density interval and P-value of 0 (one-sided) in parentheses.

No switching Regime switching
1970Q2-2010Q1 1983Q1-2010Q1 1983Q1-2010Q1

3 AR lags 1 AR lag 1 AR lag
Impact effect Regime 1 Regime 2
trend M3 growth 0.17 0.25 0.14 0.66

(0.02 – 0.33) (0.08 – 0.41) (-0.02 – 0.30) (0.27 – 1.01)
(0.02) (0.00) (0.04) (0)

trend GDP growth 0.01 -0.05 -0.10 0.40
(-0.20 – 0.26) (-0.27 – 0.18) (-0.33 – 0.13) (0.01 – 0.82)

(0.45) (0.35) (0.21) (0.02)
trend change in gov. bond yield 0.48 -0.36 -0.40 0.08

(-0.06 – 1.03) (-0.95 – 0.28) (-1.11 – 0.33) (-0.75 – 0.96)
(0.04) (0.13) (0.14) (0.41)

cyclical output gap 0.07 0.02 -0.02 0.26
(0.03 – 0.12) (-0.03 – 0.08) (-0.09 – 0.05) (0.10 – 0.39)

(0.00) (0.20) (0.28) (0.00)
Long run effects
trend M3 growth 0.75 0.53 0.43 0.53

(0.19 – 1.34) (0.21 – 0.83) (-0.10 – 0.89) (0.26 – 0.77)
(0.02) (0.00) (0.04) (0)

trend GDP growth 0.13 -0.09 -0.30 0.33
(-1.00 – 1.41) (-0.59 – 0.39) (-1.08 – 0.48) (-0.01 – 0.70)

(0.45) (0.35) (0.20) (0.02)
trend change in gov. bond yield 2.37 -0.75 -1.13 0.07

(-0.42 – 5.92) (-1.98 – 0.63) (-3.43 – 1.04) (-0.67 – 0.83)
(0.04) (0.13) (0.14) (0.41)

cyclical output gap 0.35 0.05 -0.07 0.20
(0.10 – 0.66) (-0.08 – 0.17) (-0.34 – 0.16) (0.10 – 0.31)

(0.00) (0.20) (0.28) (0.00)
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Table 4: Posterior evaluation of γ2, for G
−1
0,γz = 0.04 in the first panel and for

increasingly informative prior specification in the second panel.

γz12 γz22 γ12 γ22
Mean 0.97 3.23 -1.96 1.05

P-value of zero
(one sided)

(0.10) (0.10) (0.00) (0.09)

logBF (M0|M), M0 =

G−1
0,γz γz12 = 0 γz22 = 0 γz12 = γz22 = 0 γz12 = γz22

0.04 2.49 0.29 1.24 1.49

0.16 0.86 -0.07 -0.41 1.11

1.00 -0.66 -0.25 -1.44 0.47
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D Figures

Figure 1: Some examples: Nonlinear effect of the covariate on the state
persistence
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Figure 2: Random permutation with dRUM auxiliary sampling for the tran-
sition distribution. Marginal distribution of selected parameters.

(a) Simulated values obtained from the random permutation sampler
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Figure 3: Random permutation with dRUM auxiliary sampling for the tran-
sition distribution. Simulated values obtained from the random permutation
sampler, scatter plots of regressions parameters against constant transition
parameters γk2, k = 1, 2.
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ues implied by sampled transition parameters, marginal distribution of the
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Figure 6: M3 growth, HP-trend and low-frequency component (> 6 years).
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Figure 7: Scatter plot of sampled regression parameter against constant tran-
sition effect.
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Figure 8: Marginal posterior distribution of state-identified regression coef-
ficients (solid line, regime 2).
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Figure 9: Marginal posterior distribution of error variance and state-
identified covariate effects on the transition probability (solid line, regime
2).
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Figure 10: Boxplot of the sampled γ·2 = (γz12, γ
z
22, γ12, γ22) and marginal pos-

terior of the covariate effects for increasingly informative prior distributions
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Figure 11: Posterior mean state probabilities (cyan) along with HCIP in-
flation, loan growth and trend M3 growth. The horizontal line corresponds
to a threshold level of 1.9% quarterly credit growth rate, composed from an
average of 1.7% growth rate and an inferred 0.2% according to Definition 1
(see section 2.2). The yellow bars correspond to periods where loan growth
is continuously above trend M3 growth.
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Figure 12: Median posterior transition probabilities.
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