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Abstract

Markov models introduce persistence in the mixture distribution. In time series
analysis, the mixture components relate to different persistent states characterizing
the state-specific time series process. Model specification is discussed in a general
form. Emphasis is put on the functional form and the parametrization of time-
invariant and time-varying specifications of the state transition distribution. The
concept of mean-square stability is introduced to discuss the condition under which
Markov switching processes have finite first and second moments in the indefinite
future. Not surprisingly, a time series process may be mean-square stable even if
it switches between bounded and unbounded state-specific processes. Surprisingly,
switching between stable state-specific processes is neither necessary nor sufficient to
obtain a mean-square stable time series process. Model estimation proceeds by data
augmentation. We derive the basic forward-filtering backward-smoothing/sampling
algorithm to infer on the latent state indicator in maximum likelihood and Bayesian
estimation procedures. Emphasis is again laid on the state transition distribution.
We discuss the specification of state-invariant prior parameter distributions and
posterior parameter inference under either a logit or probit functional form of the
state transition distribution. With simulated data, we show that the estimation of
parameters under a probit functional form is more efficient. However, a probit func-
tional form renders estimation extremely slow if more than two states drive the
time series process. Finally, various applications illustrate how to obtain informa-
tive switching in Markov switching models with time-invariant and time-varying
transition distributions.
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1 Introduction

Hidden Markov models are mixture models with sequential dependence or persistence in
the mixture distribution. For a finite, discrete number of G components, persistence in
distribution is induced by specifying a latent component indicator which follows a Markov
process. The transition probabilities for the Markov process may either be time-invariant
or time-varying. In the latter case, Markov models extend mixture of experts model (see
chapter II.5 of this volume) by introducing persistence in the mixtures.

Hidden Markov models in time series econometrics became very popular after the
publications of Hamilton (1989, 1990). He transferred earlier regression based approaches
like Goldfeld and Quandt (1973) into time series analysis by recognizing their usefulness
in capturing asymmetric conditional moments or asymmetric dynamic properties of time
series. In section 2 we start by setting out the framework and terminology. In time series
analysis, components are usually called states or regimes, and the transition between
states is termed regime switch or regime change. This wording will be used in this chapter
to be consistent with the econometrics literature. We discuss in separate sections the basic
modelling choice of specifying the transition distribution of states. Hamilton (1989, 1990)
introduced the model with time-invariant or constant transition distribution, and most of
the following literature stayed with this specification.

This is not as restrictive as it may seem at first sight, given that more sophisticated
models can be built by imposing either restrictions on the state transition probabilities or
by combining multiple latent state indicators in a dynamical or hierarchical way. Change-
point models (Chib 1996, Pesaran et al. 2007, Bauwens et al. 2015) are nested in Markov
switching models by imposing appropriate zero restrictions on the transition distribution.
Linking multiple latent state indicators dynamically, we can capture many leading/lagging
features in multivariate analysis (Phillips 1991, Paap et al. 2009, Kaufmann 2010). Link-
ing state indicators hierarchically, we obtain hierarchical Markov mixture models e.g. to
disentangle long-term from short-term changing dynamics (Geweke and Amisano 2011,
Bai and Wang 2011). Nevertheless, constant or exogenous transition distributions do not
incorporate an explicit explanation or interpretation of the driving forces underlying the
transition distribution.

Including covariates effects into the transition distribution renders it time-varying and
yields at least an indication, if not a driving cause, of the regime switches. One of the
first proposals is Diebold et al. (1994). Applications followed in business cycle analysis in
Filardo (1994) and Filardo and Gordon (1998). Both probit and logit functional forms were
used for the transition distribution. Under the assumption of independence between state
alternatives, both parameterizations yield essentially the same estimation results. Later
on, Koop and Potter (2007) introduced duration dependent time-varying probabilities into
a change-point model. An interesting alternative is presented in Billio and Casarin (2011),
who use a beta autoregressive process to model time-varying transition probabilities.

Against this background, we outline various extensions that are available within the
general framework we present. Given that covariates may have state-dependent effects
on the transition distribution, we elaborate on various considerations that may flow into
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the specific parametrization of time-varying transition probabilities. Section 2 closes with
the discussion of an attractive feature of Markov switching models that has so far, to
our knowledge, not been exploited in time series analysis. So far, these models have been
applied under the assumption that the conditional, i.e. state-dependent, distributions are
stationary or, in other words, have finite moments in every period t. This need not be
the case, however. Many real phenomena are consistent with a process that alternates
between a stationary and a non-stationary state-specific distribution. Think of the recent
financial crisis, during which dynamics across economic variables may have engaged tran-
sitorily on an unsustainable path. Francq and Zaköıan (2001), and more recently Farmer
et al. (2009a), derive conditions under which the unconditional distribution of multivari-
ate time series processes in the indefinite future has finite moments, even if some state-
and period-specific conditional distributions may not have finite moments. Moreover, they
show that state-specific stationary distributions are not sufficient for a multivariate pro-
cess to approach finite moments in the indefinite future.

In section 3 we outline the estimation of Markov switching models, where the em-
phasis is on Bayesian estimation. Maximum likelihood estimation and variants of it are
based on the EM algorithm, in which the ’E’ step takes explicitly into account the state-
dependence in the mixture to infer about the state indicator (Hamilton 1990). Extensions
to multivariate models followed in Krolzig et al. (2002) and Clements and Krolzig (2003).
The forward-filtering backward-sampling algorithm provides the basis for data augmenta-
tion in Bayesian estimation (McCulloch and Tsay 1994; Chib 1996). Markov chain Monte
Carlo methods prove very useful to estimate models with multiple latent variables, like
factor models with Markov switching factor mean or factor volatility (Kim and Nelson
1998).

Hidden Markov models endorse all issues concerning mixture modelling, as compre-
hensively exposed in Frühwirth-Schnatter (2006). In the present chapter, we therefore
discuss in detail the design of state-invariant prior distributions for time-invariant and
time-varying transition probabilities (Kaufmann 2015; Burgette and Hahn 2010). We
then set out the posterior random permutation sampler to obtain draws from the un-
constrained, multimodal posterior (Frühwirth-Schnatter 2001). To sample the parameters
of the logit functional form, we borrow from data augmentation algorithms outlined in
Frühwirth-Schnatter and Frühwirth (2010) which render the non-linear, non-Gaussian
model in latent utilities linear Gaussian. Parameters are sampled from full conditional
distributions rather than by Metropolis-Hastings (Scott 2011; Holmes and Held 2006).
The approach of Burgette and Hahn (2010) proves very useful to sample parameters of
the probit functional form. Instead of normalizing the error covariance of latent utilities
with respect to a specific element (McCulloch et al. 2000; Imai and van Dyk 2005), they
propose to restrict the trace of the normalized error covariance of the latent utilities,
whereby normalization occurs in each iteration of the sampler with respect to a randomly
chosen latent state utility. To conclude section 3, we compare estimation time and sam-
pler efficiency between using the logit and the probit functional form to estimate the
data generating process of a univariate series driven by 2 and 3 hidden Markov mixtures.
We briefly illustrate that posterior state-identification is obtained by post-processing the
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posterior draws.
In this chapter, we do not discuss prior design and model choice with respect to the

number of regimes. The same considerations as outlined in chapter I.7 of this volume apply
to Markov mixture models in time series analysis and the interested reader may refer to it.
In brief, model choice with respect to the number of regimes can be addressed by means of
marginal likelihood (Chib 1995; Frühwirth-Schnatter 2004). In the maximum likelihood
framework, the issue can only be addressed in a proper statistical way by simulating
the test statistic, see Hansen (1992). The likelihood ratio statistic violates regularity
conditions, because models with different number of states are not nested within each
other. For similar reasons, the widely used information criteria are not an alternative,
either, or at least should be used with more care than usually done.

In section 4, by discussing informative regime switching we illustrate how explicit eco-
nomic interpretations of results are obtained from posterior inference. For example, struc-
tural restrictions on time-invariant transition probabilities yield explicit interpretations
about dynamic relationships across variables. One of the first contributions is Phillips
(1991) who analyzed country-specific output series in a multivariate setting. Recently,
Sims et al. (2008) proposed a general framework to implement and estimate restricted
transition distributions in large multiple equation systems. Including covariates effects
into the transition distribution provides an explicit interpretation of the driving factors
underlying the latent state indicator. Additionally, prior knowledge may flow into the
parametrization of the transition distribution by imposing parameter restrictions (Gaggl
and Kaufmann 2014, Bäurle et al. 2016). In the latter case, this induces a restricted,
state-identified prior and may call for some restricted estimation procedures. The list of
papers used for illustration is by far non-exhaustive and refers mainly to business cycle
analysis. Nevertheless, the provided examples are straightforward to apply in other ar-
eas like financial econometrics (Hamilton and Susmel 1994; Bauwens and Lubrano 1998).
Finally, section 5 concludes the chapter.

The methods discussed in this chapter apply generally to Markov switching models if
the dependence on past states is fixed. Models with infinite dependence on past states,
like in regime switching generalized ARCH models, are not treated in this chapter. The
interested reader may refer to the specific literature (Klaassen 2002; Gray 1996; Bauwens
et al. 2014) and to chapter III.5 of this volume for an overview. Forecasting is not treated
in this chapter, either. The interested reader may refer to e.g. Elliott and Timmermann
(2005), Pesaran et al. (2007) and Chauvet and Piger (2008). Scenario-based forecasting
is used in Kaufmann and Kugler (2010).

2 Regime switching – Mixture modelling over time

2.1 Preliminaries and model specification

Hidden Markov models or Markov switching models are mixture models with typical
feature of sequential (time) persistence in the mixture distribution. These models are
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often applied in time series analysis, where a scalar or a vector of observations is denoted
by yt, t = 1, . . . , T , and t indexes the observation period.

In a general model with period-specific observation densities

yt ∼ f(yt|x1t, θt) (1)

persistence is introduced by assuming a time-dependent process for θt, θt|x2t, θt−1. In (1),
x1t denotes covariates which may also include lagged observations of yt. In the present
chapter, x2t denotes covariates that influence the transition distribution of the parameters.
In time series analysis, the mixture components are called states, and in hidden Markov
models one typically assumes that the set of parameter states is discrete, θt ∈ {θ1 . . . , θG}.
The latent component indicator zt ∈ {1, . . . , G} is called the state indicator and the binary
indicator is defined by ztg = 1 iff zt = g. Conditional on zt, θt|zt =

∑G
g=1 ztgθg = θzt and

yt|zt ∼ f (yt|x1t, θzt).
State persistence is introduced by formulating a Markov process for zt:

P (zt = g|zt−1 = g′, x2t) = ηt,g′g (2)

with
∑G

g′=1 ηt,g′g = 1. In the most general specification, covariates x2t render the state
transition probabilities ηt,g′g time-specific or time-varying. Hidden Markov models thus
extend mixture of experts models by introducing persistence in the mixture distribution.

In this chapter, we will denote the set of states by G = {1, . . . , G}. Specific functional
forms of state transition call for specific identification restrictions, which are usually set on
a reference state. We will denote this reference state by g0. Finally, we define G−g = G\g .

2.2 The functional form of state transition

Different functional forms are available to model Markov state transition ηt, and each
of them needs careful specification. In particular, to extract the information of interest
from the data, the researcher has to form expectations about parameterizations to shape
the functional form in a sensible way, and, if of interest, to design state-invariant prior
distributions. Therefore, in this and other sections, we discuss each functional form in
turn.

2.2.1 Time-invariant switching

The simplest way to parameterize time-invariant switching

P (zt = g|zt−1 = g′) = ηg′g (3)

is to define ηg′g directly as transition probability. In this setup, one has to ensure that
0 < ηg′g < 1 while estimating the model. Persistence probabilities have to lie strictly
between 0 and 1 to avoid absorbing states. If absorbing states are present in the data,
they should follow non-absorbing states, to be able to identify the state-specific parameters
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of the latter ones. In change-point models with a finite and an infinite number of change-
points (Chib 1998; Pesaran et al. 2007; Koop and Potter 2007), ηg′g = 0 for g < g′. They
represent a sequence of non-recurrent states, where after a switch to state g no recurrence
to state g′ < g is allowed any more.

The alternative is to work with a logit functional form

P (zt = g|zt−1 = g′) = ηg′g =
exp (γg′g)∑G
j=1 exp (γjg)

in which, for identification purposes, γg′g0 = 0 for some reference state g0 ∈ G. No restric-
tion on γ = {γg′g|g′ ∈ G, g ∈ G−g0} is needed to ensure that the transition probabilities lie
between 0 and 1. In general, working with a functional form has also the advantage that
covariates can be included to design time-varying or informative regime switching.

2.2.2 Time-varying switching

To design time-varying switching, we introduce covariates in the transition distribution
ηt,g′g = η(x2t, γ). Depending on the functional form, different restrictions are imposed on
γ for identification purposes. In the following, we work with a scalar notation of x2t. With
appropriate adjustments, the generalization to a vector of covariates is straightforward.

The logit functional form with covariates writes

ηt,g′g =
exp

(
x2tγ

x
g′g + γg′g

)∑G
j=1 exp

(
x2tγx

g′g + γg′g
) (4)

where, for identification purposes we impose γg′g0 = 0 for some reference state g0 ∈ G, see
e.g. Diebold, Lee, and Weinbach (1994) for an early contribution.

An alternative is the probit functional form

ηt,g′g = Φ
(
x2tγ

x
g′g + γg′g

)
(5)

where Φ(x) =
∫ x

−∞ ϕ(u)du is the cumulative distribution function with respect to the stan-
dard normal density ϕ(·). For G = 2, the restriction γg′g0 = −γg′g provides identification,
see Filardo (1994) and Filardo and Gordon (1998) for early contributions in economics.

Remark 1: In both functional forms, we do not fix the reference state to g0 = 1 as
is usually done. In estimation, this generalization allows us to apply the permutation
sampler to the reference state as well.

Remark 2: When G = 2, the advantage of the probit specification is obviously that
the associated latent random utility model is standard normal

z∗gt = x2tγ
x
zt−1g

+ γzt−1g + νgt, νgt ∼ N(0, 1) (6)

for g ̸= g0, which renders parameter estimation straightforward.
The situation is more intricate for multi-state regime switching models. Conditional

on the state indicator z, parameter estimation in a multinomial probit model for ηt is
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not the issue (McCulloch et al. 2000; Imai and van Dyk 2005; Nobile 1998; Burgette and
Hahn 2010). Instead, the state indicator is not observed and needs to be inferred from the
data. This needs evaluation of TG(G− 1) multivariate integrals (see also Nobile 1998)

ηt,g′g =

∫
Gg′g

ϕ(νt,Σ)dνt, g ∈ G−g0

where ϕ(·) is the density of the (G − 1)-variate normal with mean 0 and covariance Σ,
νt = (ν1t, . . . , νg0−1,t, νg0+1,t, . . . , νGt)

′. The set Gg′g is given by

Gg′g =
∩
j ̸=g

{
νgt − νjt > x2t(γ

x
g′j − γx

g′g) + (γg′j − γg′g)
}

∩
{
νgt > −(x2tγ

x
g′g + γg′g)

}
Various procedures have been proposed to evaluate these integrals (Geweke et al. 1994).
They all represent approximations to the transition probabilities, however. Moreover,
estimation gets very slow, see section 3.4.

2.2.3 Nested alternatives

Some alternatives are nested in both the logit and the probit functional form. If γx
g′g =

0, we recover the specification with time-invariant transition probabilities, e.g. ηg′g =

exp (γg′g) /
(∑G

j=1 exp(γg′j

)
.

State persistence is maintained, even if we restrict the covariate effect to be state-
independent γx

g′g = γx
g ∀g′. If we additionally restrict γg′g = γg, we obtain a mixture

model with time-varying weights:

f(yt|x1t, x2t, θ) =
G∑

g=1

ηtg(x2t, γg)f(yt|x1t, θg)

The relevance of differences across state-dependent parameters or the relevance of
covariates can be evaluated using the Savage-Dickey density ratio:

logBF (M0|M) = log
π (γ|y, x1, x2) |γ∈R

π (γ) |γ∈R

where M0 and M indicate, respectively, the restricted and the unrestricted model and R
represents a single or a combination of restrictions on γ mentioned above.

2.3 Generalizations

The framework (1) encompasses linear regressions and dynamic models as well, given
that x1t may also include lagged observations of yt. The Markov process in (2) is of order
one. This is not restrictive, as pth-order Markov processes can be reparameterized by
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defining an encompassing Gp first-order Markov state process with appropriate design
of the transition distribution. Likewise, current and (fixed) p lagged state dependence in
f(yt|·) may be reparameterized to current state dependence by defining an encompassing
G1+p state variable with appropriately designed transition distribution and enlarging the
state-specific parameter to θt = {θzt−j

|j = 0, . . . , p, zt ∈ G ∀t}, see also Hamilton (1994,
chapter 22).

Model (1) is generic in terms of the state-dependence of yt and θt, as well as
in terms of parametrization of the state indicator. Some elements of θt might be
state-independent, θt = {{θg, θ0}|g = 1, . . . , G}, e.g. Frühwirth-Schnatter and Kauf-
mann (2006). The model encompasses situations where some elements of the appro-
priately partitioned vector yt = (y′1t, y

′
2t)

′ follow a state-independent distribution, i.e.
f(yt|xt, θzt) = f(y2t|y1t, xt, θ2,zt)f(y1t|xt, θ1).

Multiple states may affect yt. The simplest situation is the case where indepen-
dent state processes determine the elements in yt, yt ∼ f(y2t|y1t, xt, θz2t )f(y1t|xt, θz1t ),
Psaradakis, Ravn, and Sola (2005). If observations are independent and driven by in-
dependent processes, the models for y1t and y2t might even be analyzed separately,
yt ∼ f(y1t|xt, θ1,z1t )f(y2t|xt, θ2,z2t ). Finally, state indicators zjt , j = 1, . . . , p, may be linked
by a dynamic or hierarchical structure, (Kaufmann 2010; Geweke and Amisano 2011; Bai
and Wang 2011). These models are analyzed by defining an encompassing state indica-
tor z∗t , which captures all of the possible state combinations of the underlying p state
indicators, see subsection 4 for some examples and references to applications.

2.4 Some considerations on parametrization

Nothing has been said about scaling of covariates x2t. In fact, in specification (4), the
covariate is assumed to be mean-adjusted or normalized, x2t = x̃2t − x̄2, where x̃2t and x̄2

are, respectively, the level series and the mean or the normalizing level. We call this the
centered parametrization, in which the time-invariant part of the transition probabilities,
γg′g, gets scale-independent. In estimation, this scales the range of sensible values for γg′g
and in Bayesian estimation this allows to design a scale-invariant prior.

To illustrate this, assume G = 2, state-independent state probability η =
exp (x2tγ

x + γ) / (1 + exp(x2tγ
x + γ)), with γx = 0.5. The range of γ against η to ob-

tain η = 0.5 when x̃2t = x̄2 is not scale-invariant with respect to x̃2t, see the dashed and
solid lines in figure 1. Working with the centered version, removes scale-dependence of γ,
see the dash-dotted line in figure 1.

[Insert figure 1 around here]

Moreover, it is worthwhile to form expectations about sensible parameter configura-
tions prior to estimation.1 Assume state-dependent covariate effects, g0 = 1, such that
γg′2 = γ = (γx

1 , γ
x
2 , γ1, γ2). Figure 2 plots the state persistence against the covariate for

two settings of γ. In both settings, state persistence is ηgg = 0.88 if x2t = 0. If (γx
1 , γ

x
2 )

1The example follows the one in Kaufmann (2015).
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deviate with equal sign from zero, in the limit, as x2t → ±∞, one of the states becomes
absorbing. On the other hand, if the parameters differ in sign both states become absorb-
ing if x2t → −∞ or the indicator switches back and forth between states if x2t → ∞. The
conclusion we draw from this very simple illustration is that if unconstrained covariates
have state-dependent effects in the transition distribution, the parameter configuration
for γx should be such that the probability mass is shifted mainly towards one of the states
as x2t varies in size.

[Insert figure 2 around here]

2.5 Mean-square stability: Combining stable and unstable pro-
cesses

To motivate the discussion, assume a two-state Markov switching univariate autoregressive
process of order one:

yt = ρztyt−1 + εt, εt ∼ N(0, σ2) (7)

with a given transition matrix η. Usually, it is assumed that |ρzt | < 1, for zt = 1, 2. In
this case, the unconditional state-specific distribution f(yt|zt) has bounded moments ∀t,
and limt→∞ f(yt) as well. The latter condition is weaker than the former and is defined as
mean-square stability in the engineering literature (Costa et al. 2004). For multivariate
processes, the situation becomes more intricate. Francq and Zaköıan (2001) derive station-
arity conditions for Markov switching multivariate autoregressive moving-average models
and show that stationary state-specific processes need not be sufficient for mean-square
stability.

Mean-square stability requires that the first and second moments of the process yt
converge to a well defined limit as the time horizon extends to infinity (see Definition 1
in Farmer et al. 2009b):

lim
t→∞

E(yt) = µ, lim
t→∞

E(yty
′
t) = Σ

Mean-square stability is weaker than bounded stability which additionally requires
bounded moments ∀t. In linear systems, mean-square stability is equivalent to bounded
stability (for bounded shocks). However, in Markov switching models the concepts are
not the same.

In the above example, a univariate stationary state process |ρ1| < 1 may be combined
with a non-stationary one, |ρ2| > 1, if the second state does not recur too often and does
not persist for too long. Bounded stability is not given, because the second moment of
f(yt|zt = 2) is unbounded, while mean-square stability may hold.

One might wonder why we should care about mean-square stability. Usually, Bayesian
estimation involves the conditional distribution f(yt|zt, yt−1), which has finite moments
even for unstable processes. However, taking a forecasting perspective, it might be of
interest to ensure that the estimated model implies a forecast density with bounded
moments in the long run, although unstable periods would produce forecast densities
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with unbounded moments at some forecast horizon. In the macroeconomic literature, the
concept is of interest in solving for the long-run equilibrium in Markov switching dynamic
stochastic general equilibrium models, see Farmer et al. (2009a, 2009b, 2011).

Francq and Zaköıan (2001) and Costa et al. (2004) show that mean-square stability
is given for a Markov switching process if all roots of the matrix (we drop the subscript t
on η)  η11ρ1 ⊗ ρ1 . . . ηG1ρG ⊗ ρG

...
...

η1Gρ1 ⊗ ρ1 . . . ηGGρG ⊗ ρG

 (8)

lie inside the unit circle.
Clearly, mean-square stability depends non-linearly on the state-specific processes ρg

as well as on the transition distribution η. In particular, state-specific bounded processes
(i.e. when the roots of ρg, ∀g ∈ G lie inside the unit circle) do not always ensure a
mean-square stable process for yt.

The example in Farmer et al. (2009b, p. 1854-55) (another is given in Francq and
Zaköıan 2001) illustrates this surprising result and we reproduce it here. Assume a bivari-
ate two state Markov switching autoregressive process yt with state-dependent autore-
gressive matrices

ρ1 =

[
0 2
0 0.5

]
ρ2 =

[
0.5 0
2 0

]
Both state-specific processes are stable (and covariance stationary) and yield each uncon-
ditional distributions with bounded moments. Assume that the transition between the
two processes is characterized by either of the two transition matrices

η =

[
0.7 0.3
0.4 0.6

]
, η̃ =

[
0.9 0.1
0.4 0.6

]
The intriguing thing is that in combination with transition probability matrix η, the roots
of the matrix (8) lie outside the unit circle while with transition matrix η̃ the roots lie
inside the unit circle. The first process is not mean-square stable, although both state-
specific processes are stable. Decreasing the transition frequency between states restores
mean-square stability.

There are many situations where one or more regimes may be unstable. In economics
for example, periods of hyperinflation are clearly unstable. It is conceivable that the
economic variables engaged on an unstable path during the period in which the recent
financial crisis unraveled. The concept of mean-square stability allows us to combine
unstable and stable processes, if the unstable process, relatively to the stable process,
does not persist for too long and/or does not recur too often. Figure 3 plots the boundary
values for (ρ1, ρ2) conditional on various combinations for (η11, η22) for which the univariate
process in (7) is still mean-square stable. In general, the boundary value for ρg decreases
the more persistent state g is. We observe that many combinations allow for an explosive
root in either state-specific process, even if both states are highly persistent, see e.g.
the most inner boundary circle conditional on (η11, η22) = (0.9, 0.7) in the left panel
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of the figure. For illustration, figure 4 plots a generated series with (ρ1, ρ2) = (1.1, 0.7)
conditional on (η11, η22) = (0.5, 0.7).

[Insert figure 3 around here]

[Insert figure 4 around here]

Although this specific feature is appealing for time series and macroeconomic mod-
elling, it has so far been applied very rarely. The work of Davig and Leeper (2007) and of
Farmer and co-authors derived conditions for unique equilibrium determination in DSGE
models. Foerster et al. (2016) present advances to obtain solutions in Markov switching
DSGE models. In time series modelling, most applications estimate Markov switching
models with stable state-specific processes. Allowing Markov switching between state-
specific stable and unstable, explosive processes represents an interesting avenue for future
research.

3 Estimation

As in general for mixture modeling, the latent states are a priori not identified in the
mixture and the likelihood will be invariant to permutations of states, ρ = (ρ1, . . . , ρG),
L (y|x1, z, θ) = L (y|x1, ρ(z, θ)). Thus, state-identification is obtained by imposing order-
ing restrictions on state-specific parameters θ or η. Obviously, state-identifying restrictions
have to be imposed on parameters which indeed differ between states. Knowledge about
state-specific parameters can also be imposed to estimate a state-identified model. If there
is uncertainty about which parameters differ between states, we may first estimate the
unidentified model and apply an appropriate state-identifying restriction ex-post to obtain
a state-identified model.

In Bayesian estimation, in the first case we also impose the state-identifying restriction
on the prior and apply restricted sampling. In the second case, we design a state-invariant
prior to explore the state-invariant posterior π (z, θ, η|y, x) = π (ρ(z, θ, η)|y, x). Poste-
rior inference is obtained by random permutation sampling (Frühwirth-Schnatter 2001).
State identification is then obtained by post-processing the posterior output (Frühwirth-
Schnatter 2011).

We discuss estimation conditional on G. Testing or model evaluation with respect to
G is not discussed, given that methods described in chapter ?? of this handbook can be
applied with appropriate adjustments.

3.1 The complete data likelihood and the FFBS algorithm

Estimation of hidden Markov models has to take into account the sequential dependence
in zt. The complete data likelihood factorizes into the conditional likelihood:

L (y|x1, z, θ) =
T∏
t=1

f(yt|x1t, θzt) (9)
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where for both frequentist and Bayesian estimation we need an inference on the latent
indicator zt. Given the time dependence in zt, the ’E’ step in the EM algorithm and the
data augmentation step in Bayesian inference are slightly more involved than described
in chapter I.2 in this volume. Both, however, start out with the factorization of the state
distribution conditional on all data

π (z|y, θ, η) = π (zT |IT )
T−1∏
t=1

π (zt|IT , zt+1)π (z0)

where the dependence on (θ, η) is suppressed on the right-hand side for notational conve-
nience, It denotes information up to time t and π (z0) denotes the starting state probability
distribution (Chib 1996). The factorization includes the typical element

π (zt|IT , zt+1) ∝ π (zt|It) π (zt+1|zt, IT ) (10)

∝ π (zt|It) ηt+1,ztzt+1

The term π (zt|It) ∝ f(yt|xt, zt, θ)π (zt|It−1) consists of the likelihood f(yt|·) and
π (zt|It−1) = ηtπ (zt−1|It−1) is obtained by extrapolation.

Inference on π (z|y, x, θ, η) is obtained by a forward-filtering backward-smoothing al-
gorithm (FFBS), which is based on the Kalman filter.

1. Run forward in time t = 1, . . . , T to obtain the filter densities π (zt|It) or the filter
probabilities P (zt = g|It):

P (zt = g|It) =
f(yt|xt, θg)P (zt = g|It−1)∑G

g′=1 f(yt|xt, θg′)P (zt = g′|It−1)
(11)

P (zt = g|It−1) =
G∑

g′=1

ηt,g′gP (zt−1 = g′|It−1) (12)

At T we obtain π (zT |IT ).

2. Run backward in time t = T − 1, . . . , 1 to obtain the smoothed densities π (zt|IT )
or smoothed probabilities P (zt = g|IT )

P (zt = g|IT ) =
G∑

g′=1

P (zt = g|It, zt+1 = g′)P (zt+1 = g′|IT ) (13)

where

P (zt = g|It, zt+1 = g′) =
P (zt = g|It) ηt+1,gg′∑G
g=1 P (zt = g|It) ηt+1,gg′

(14)
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3.2 Maximum likelihood estimation

Conditional on the smoothed probabilities P (zt = g|IT ), t = 1, . . . , T , the complete data
likelihood

L(y|x1, z, θ) =
T∏
t=1

G∑
g=1

P (zt = g|IT ) f(yt|x1t, θg) (15)

is maximized with respect to the model parameters (the ’M’ step). With respect to θ, we
solve

T∑
t=1

G∑
g=1

∂ log f(yt|x1t, θg)

∂θ′g
P (zt = g|IT ) = 0

For example, in a multiple regression setup with normally distributed error terms,
θg = {βg, σ

2
g}, the observation density is

f(yt|x1t, θg) =
1√
2πσg

exp

{
− 1

2σ2
g

(yt − x′
1tβg)

2

}
and the maximum likelihood estimate of βg corresponds to a weighted least squares esti-
mate

β̂g =

(
T∑
t=1

x̃tx̃
′
t

)−1( T∑
t=1

x̃tỹt

)
where x̃t = xt

√
P (zt = g|IT ) and ỹt = yt

√
P (zt = g|IT ) are the observations weighted

by the square root of the smoothed probabilities. The estimate of the state-dependent
variances equals

σ̂2
g =

∑T
t=1

(
ỹt − x̃′

tβ̂g

)2
∑T

t=1 P (zt = g|IT )

The estimate of time-invariant Markov transition probabilities (3) is given by

η̂g′g =
T∑
t=2

P (zt = g, zt−1 = g′|IT )

P (zt−1 = g′|IT )

where the numerator equals the terms in (13) for given (g, g′) (Hamilton 1994, chapter
22). The first-order conditions with respect to γ in case of time-varying transition proba-
bilities are non-linear, see e.g. Diebold et al. (1994). To estimate multi-state time-varying
transition probabilities one may borrow from recent advances in modelling latent class
multinomial logit models, Greene and Hensher (2003, 2013), Hess (2014).

Conditional on estimates (θ̂, η̂), the maximal value of the likelihood function is

L(y|x1, z, θ̂) =
T∏
t=1

G∑
g=1

P (zt = g|IT ) f(yt|x1t, θ̂g) (16)
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3.3 Bayesian estimation

To make inference on the joint posterior

π (z, θ, η|y, x) ∝ L(y|x1, z, θ)π(z|η)π(η|x2)π(θ) (17)

we use data augmentation based on the FFBS procedure derived in section 3.1. The
first term in (17) represents the conditional data likelihood (9). The prior π(z|η) =∏T

t=1 π(zt|zt−1, ηt)π(z0) takes into account time dependence in zt.
To sample from the state-invariant posterior, we have to design state-invariant prior

distributions π(η|x2) and π(θ). A state-invariant prior π(θ) is often quite straightforward
to design, while the design of a state-invariant prior π(η|x2) is slightly more intricate
depending on the level of complexity in the parametrization (see below).

If prior information is known about state-identifying restrictions, it may be sensible
to integrate these restrictions into the prior θ ∼ π (θ) 1R or into η ∼ π (η) 1R, where 1R is
one if the set of restrictions R is fulfilled. This, however, destroys state-invariance of the
prior distribution and estimation proceeds with restricted sampling.

3.3.1 Prior specification π(η|x2)

For time-invariant switching (3) a conjugate prior is the Dirichlet distribution
(ηg′1, . . . , ηg′G) ∼ D (e0,g′1, . . . , e0,g′G), g

′ = 1, . . . , G. To obtain a state-invariant prior

π (η) ∼
G∏

g′=1

D (e0,g′1, . . . , e0,g′G)

we set e0,gg = κ0 ∀g, and e0,g′g = κ1 ∀g′ ̸= g, where κ0, κ1 > 0. An informative prior
usually puts more weight on the persistence probabilities, i.e. κ0 > κ1. If G = 2, the
prior distribution is beta distribution B(e0,gg, e0,g′g), g = 1, 2, g′ ̸= g. Sims et al. (2008)
derive a general framework to model Markov switching transition probabilities in large
multiple-equation systems, including a framework to design a prior Dirichlet distribution
which induces restrictions on the transition probability matrix.

For the logit and the probit functional form (see section 2.2.2) the prior for γ = {γg|g ∈
G−g0 γg =

(
γx
1g, . . . , γ

x
Gg, γ1g, . . . , γGg

)
} is assumed normal

π (γ) =
∏

g∈G−g0

π (γg) =
∏

g∈G−g0

N (e0,g, E0)

where the hyperparameters in e0,g relate respectively to γg.
Generally, a state invariant prior for the logistic functional form is designed in the

following way (Kaufmann 2015). The hyperparameters relating to state persistence are set
to {ex0,gg, e0,gg} = {κx, κ}. Then, the hyperparameters referring to transition parameters
from the reference state to state g are set to {ex0,g0g, e0,g0g} = {−κx,−κ} and those referring
to transition parameters from other states to state g to zero, {ex0,jg, e0,jg} = {0, 0}, j ̸=
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g, g0. Thus, the dependence on g in N (e0,g, E0) is not suppressed because the ordering of
hyperparameters in e0,g varies across g. When random permutation sampling (see below)
includes the reference state g0, hyperparameters e0,g have to be permuted accordingly, see
the appendix in Kaufmann (2015). Conditional on g0, i.e. keeping g0 fixed for estimation,
hyperparameters e0,g do not have to be permuted, however.

Under the consideration that relevant parameters in γx
g should be shifted away from

zero in the same direction (see 2.4), in fact the only sensible parametrization for a state-
invariant prior is κx = 0.

The prior specification proposed in Burgette and Hahn (2010) proves especially useful
to apply the permutation sampler when we use a probit functional form for η. They define
a prior which is state-invariant in the sense that normalization is independent of a reference
state. The parameter γg0 equals the negative of the sum over the parameters governing
transitions to the other states, γg0 = −

∑
g ̸=g0

γg. Additionally, instead of normalizing
element (g0, g0) of the covariance in latent utilities, the trace tr(Σ∗) of the normalized
error covariance in latent utilities

z∗gt = x2tγ
x
zt−1g

+ γzt−1g + νgt, g ∈ G−g0 (18)

νt = (ν1t, . . . , νg0−1,t, νg0+1,t, . . . , νGt)
′ ∼ N(0,Σ∗)

is normalized to tr(Σ∗) = G− 1. To obtain a state-invariant prior, we first set all hyper-
parameters relating to state persistence to {ex0,gg, e0,gg} = {κx, κ}, ∀g ̸= g0, and then all
other elements to {ex0,g′g, e0,g′g} = {−κx/(G− 1),−κ/(G− 1)}, g′ ̸= g, ∀g′, g ̸= g0. Again,
the only sensible parametrization for a state-invariant prior is κx = 0.

3.3.2 Posterior inference

To obtain a sample from the posterior (17), we repeatedly draw from

1. π (z|y, x, θ, η): A draw from the latent indicator z is obtained by applying the FFBS
algorithm (see section 3.1), where the ’BS’ step becomes a backward-sampling step.
Given the filter densities π (zt = g|It), we first sample zT from π (zT |IT ). For t =
T − 1, . . . , 1, we sample from

π (zt = g|IT ) ∝ π (zt = g|It) ηt+1,gzt+1

2. π (η|z) or from π (η|z) 1R in case state-identifying restrictions are imposed on the
prior: Details are given in the next sub-section.

3. π (θ|y, x, z) or from π (θ|y, x, z) 1R.

If the prior is state-invariant we terminate the sampler by

4(i). randomly permuting the states and state-specific parameters (random permutation
sampler): We obtain a sample from the unconstrained multimodal posterior (17)
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4(ii). re-ordering the states and state-specific parameters according to a pre-defined state-
identifying restriction (restricted sampler): We obtain a sample from the constrained
posterior.

Sampling from restricted posterior distributions π (η|z) 1R and π (θ|y, x, z) 1R, calls either
for restricted or some rejection sampling procedures, see section 4 for some examples.

3.3.3 Posterior sampling of transition parameters

In sampling step 2, under time-invariant switching and a Dirichlet prior, the posterior is
also Dirichlet

π (η|z) ∼
G∏

g′=1

D (eg′1, . . . , eg′G)

with eg′g = e0,g′g + # {zt = g, zt−1 = g′}, where the prior hyperparameter is updated by
the number of times state g is preceded by state g′.

Sampling from π (γ|x2t, z) under the logit functional form is based on introducing
latent state-specific random utilities zugt for all but the reference state g0 (McFadden
1974)

zugt = X ′
tγg + νgt, ∀g ∈ G−g0 (19)

νgt i.i.d. Type I extreme value

where X ′
t = (x2tzg,t−1, x2tzg,t−1, . . . , x2tzg,t−1, zg,t−1, zg,t−1, . . . , zg,t−1). Given that maxi-

mum utility is obtained for the observed state, we use a partial representation of the
model, in which the latent utilities are expressed in difference to the maximum utility of
all other states:

z∗gt := zugt − zu−g,t = c+X ′
tγg + ϵgt, ∀g ∈ G−g0 (20)

ϵgt i.i.d. Logistic

where zu−g,t = maxj∈G−g z
u
jt and c is a constant.

The latent utilities model (20) is linear in γ, with non-normal errors, however.
Frühwirth-Schnatter and Frühwirth (2007) suggest to introduce a second layer of data
augmentation to approximate the Logistic distribution of ϵgt by a mixture of normals
with M components. Conditional on z∗

g =
(
z∗g1, . . . , z

∗
gT

)
and the mixture components

Rg = (Rg1, . . . , RgT ), Rgt ∈ {1, . . . ,M}, we obtain a normal posterior for γ

γg|z, x2,z
∗
g,Rg ∼ N

(
eg
(
z∗
g,Rg

)
, Eg (Rg)

)
with moments eg(·) and Eg(·) explicitly derived in the appendix of Kaufmann (2015).

The first layer of data augmentation (20) renders the model linear in γ and posterior
sampling of γ can also be based on a Metropolis-Hastings step, see Scott (2011), Holmes
and Held (2006), which is also used in economic applications, see Hamilton and Owyang
(2012), Owyang et al. (2015). However, Frühwirth-Schnatter and Frühwirth (2007) show
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that sampling efficiency is considerably improved by introducing the second layer of data
augmentation. In addition, Kaufmann (2015) shows that higher sampling efficiency is
achieved when the partial representation (20) rather than specification (19) is used.

When the multinomial probit functional form is used, data augmentation and param-
eter estimation can generally proceed as in Albert and Chib (1993), McCulloch, Polson,
and Rossi (2000), Nobile (1998). The (normalized) model (18) for the latent random
utilities is linear Gaussian and the posterior π (γ|z, x2, z

∗,Σ∗) is normal. Burgette and
Hahn (2010) propose a sampler that is particularly useful to apply random permutation
sampling. Given their detailed description, we do not reproduce the sampler in detail here.

3.4 Sampler efficiency: Logit versus Probit

In this section we simulate series yt of length T = 500 with autoregressive processes
subject to G = {2, 3} regimes with time varying transition probabilities.

yt = ρztyt−1 + εt, εt ∼ N(0, σ2
zt) (21)

with parameter settings

(ρzt , σ
2
zt) =


(0.2, 0.1) if zt = 1
(0.8, 0.01) if zt = 2
(0, 1) if zt = 3

We simulate zt using the logit functional form for the transition probabilities and use the
following parametrization for γ:

G = 2 G = 3
g = 2 g = 2 g = 3

γx
1g 4 4 0

γx
2g 1 3 2

γx
3g 0 4

γ1g −2 −1 −1
γ2g 2 1 0
γ3g 0 2

For the covariate x2t, we assume a persistent process, x2t = 0.8x2,t−1 + ϵt, ϵt ∼ N(0, 1).
We estimate the model using either the logit or the probit functional form for the

transition probabilities and evaluate estimation time and sampler efficiency. For esti-
mation, we include a constant θ0g and use independent parameter prior specifications,
θ0g ∼ N(0, 0.0225), ρg ∼ N(0, 0.21), σ2

g ∼ IG(5, 0.25). For γ, we use E0 = I2G, with I2G
the 2G × 2G identity matrix, (κx, κ) = (0, 2) and (κx, κ) = (0, 0) when working with,
respectively, the logit and the probit functional form. When we use the probit functional
form, the trace-restricted Wishart prior for Σ∗ is parameterized according to Burgette
and Hahn (2010).
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[Insert table 1 around here]

We draw M = 30, 000 times out of the posterior and retain the last 15,000 draws
for posterior inference. In table 1 we report the time to obtain 1,000 draws from the
random permutation sampler and the inefficiency factor for the state-identified posterior
draws of γ(m), m = 1, . . . ,M . Obviously, there is a trade-off. For G = 2, estimation
time and efficiency are comparable across both functional forms. By thinning out the
posterior sample, we reduce inefficiency roughly by a factor of four. When G = 3, while
estimation time remains nearly unchanged when working with the logit functional form,
there is a tenfold increase in estimation time when working with the probit functional
form. Obviously, this is due to the fact that in each iteration, TG(G − 1) multivariate
integrals have to be evaluated to compute the transition probabilities ηt. On the other
hand, the probit sampler of Burgette and Hahn (2010) performs much better in terms of
efficiency. This is also reflected in figure 5, in which we depict the autocorrelation function
of the state-identified posterior draws for γ

(m)
g , g = {2, 3} and m = 1, . . . ,M . While

autocorrelation functions drop at about the same rate when G = 2, the autocorrelations
drop very quickly to zero when working with the probit functional form whenG = 3. Given
these results, the researcher may use the logit functional form to save on estimation time,
and thin out considerably the posterior sample to adjust for the relative inefficiency.

[Insert figure 5 around here]

3.5 Posterior state identification

We illustrate posterior state identification based on the posterior output of the model
estimated with the logit functional form (the one obtained using the probit functional
form is identical). Figure 6 reproduces scatter plots of unsorted posterior draws on the

first line. In panel (a) ρ
(m)
g is plotted against ρ

(m)
g′ , g ̸= g′. In panel (b), ρ

(m)
g is plotted

against log σ2
g
(m)

. Panel (a) reflects the K! modes of the unidentified posterior output
of the random permutation sampler. On the other hand, panel (b) reveals that states
may be identified by imposing the restriction (ρg, σ

2
g)|g = 1, 2, 3, 1(ρ1<ρ2<ρ3)1(σ2

1>σ2
2>σ2

3)
. All

those draws which can be permuted uniquely to fulfill the state-identifying restriction are
retained to do posterior inference. For illustration, panels (c) and (d) in figure 6 reproduce
the state-identified marginal posterior distributions of θ0g, ρg and γx

g′g, respectively.

[Insert figure 6 around here]

4 Informative regime switching in applications

In this section, we discuss various possibilities to introduce information in the transition
distribution. The usual critique to Markov switching models with time-invariant transition
distributions is that the switches of the state indicator remain unexplained. In economic
analysis, the usual approach to give an interpretation to the state indicator is to relate
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ex-post estimated state-specific periods to some statistical measures of investigated series,
like state-specific means or volatilities. Another possibility is to relate the estimated state
indicator to some officially released indicator, like the business cycle turning point dates
released by the National Bureau of Economic Research (NBER).

To address the critique, one can directly include information into the transition dis-
tribution. Being more specific on the design of the transition distribution, one can ob-
tain informative switching for time-invariant specification. Including explicitly covariates
which affect the transition probabilities renders the transition distribution informative
and time-varying. The last possibility to include information is to impose restrictions on
the parameters of the transition distribution.

4.1 Time-invariant switching

Consider the time-invariant specification of the transition probabilities P (zt = g|zt−1 =
g′) = ηg′g, and collect the probabilities in the matrix

η =

 η11 . . . η1G
...

ηG1 . . . ηGG

 (22)

Information can be included by explicitly designing or imposing restrictions on the
transition matrix. In this sense, the time-invariant transition distribution becomes infor-
mative. In the following we discuss various examples. In Sims et al. (2008), the interested
reader finds an encompassing framework to impose and analyze restrictions on Markov
transition probabilities in large multiple-equation models.

4.1.1 Unconditional switching

Imposing the restriction ηg′g = ηg in (22) renders state switching unconditional. The
Markov mixture model simplifies to a simple mixture model

f(y|θ, η) =
T∏
t=1

G∑
g=1

ηgf(yt|θg), P (zt = g|η) = ηg

4.1.2 Structured Markov switching

The general setup (22) introduces state persistence with expected state persistence of
(1−pgg)

−1. It does not ensure minimum time duration, which is defined for some economic
features like e.g. a recession. A recession is usually defined as two consecutive quarters (half
a year) of negative gross domestic product (GDP) growth. When working with quarterly
GDP data, we might include this minimum cycle duration by designing an encompassing
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state indicator z∗t with transition matrix:

η∗ =


η11 η12 0 0
0 0 0 1
1 0 0 0
0 0 η21 η22


z∗t = 1, zt = 1 recession
z∗t = 2, zt = 1 trough
z∗t = 3, zt = 2 peak
z∗t = 4, zt = 2 expansion

which imposes a minimum cycle duration from peak-to-peak or trough-to-through of five
quarters (Artis et al. 2004). Generalizing to longer state durations or to state-specific
cycle durations is straightforward.

In multivariate analysis, sub-vectors of data in yt = (y′1t, y
′
2t)

′ may be affected by dif-
ferent state indicators. The simplest setup is the case where both indicators follow inde-
pendent transition distributions, f(yt|xt, zt, θ, η) = f(y2t|y1t, xt, z

2
t , θ, η2)f(y1t|xt, z

1
t , θ, η1).

Taking business cycle analysis again as an example, a common feature in macroeconomic
data is that a group of variables is perceived as leading the business cycle, while an-
other group of variables moves contemporaneously with GDP. To include this feature into
the model, we may impose that states of z1t should lead states of z2t by designing the
encompassing state z∗t with transition matrix:

η∗ =


η∗11 η∗12 0 0
0 η∗22 0 η∗24
η∗31 0 η∗33 0
0 0 η∗43 η∗44


z∗t = 1, z1t = 1 and z2t = 1
z∗t = 2, z1t = 1 and z2t = 2
z∗t = 3, z1t = 2 and z2t = 1
z∗t = 4, z1t = 2 and z2t = 2

(23)

where η∗g′g are appropriately scaled convolutions of the transition probabilities of the
underlying states z1t and z2t . The restrictions impose a minimum duration of five periods
for a full cycle. They also impose that the leading state indicator z2t can only switch
across states when z1t has reached the same state. The approach was used by Phillips
(1991) to model international data. Kaufmann (2010) uses the setup to cluster a large
panel of macroeconomic data into a group of series leading the business cycle and a group
of series contemporaneously moving with GDP growth. The posterior evaluation of (23)
yields additional interpretations. For example, the expected lead of z2t into a recovery
(z1t = z2t = 2) is 1/(1− η∗22). Probabilistic forecasts about e.g. the probability of reaching
the trough (z∗T+2 = 2) within the next half year conditional on being in recession currently
(z∗T = 1) are available from the forecast density P (z∗T+h|yT , xT , z

∗
T ).

Dynamic structure between states can also be designed by using varying time leads
for transition. Paap et al. (2009) define asymmetric leads across two-state business cycle
phases (zt ∈ {0, 1} in their setup):

z2t =

{ ∏κ2

j=κ1
z1t−j if κ1 ≥ κ2

1−
∏κ1

j=κ2

(
1− z1t−j

)
if κ1 < κ2

where for specific values like κ1 = 8 and κ2 = 5 one may even obtain state dynamics with
overlapping phases of different cycles. In Paap et al. (2009), κ1 and κ2 are also part of
model estimation.
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Yet another example is found in Kim et al. (2005) who link hierarchically two binary
state variables z1t , z

2
t to a base 3-state indicator zt with restricted transition probability

η =

 η11 1− η11 0
0 η22 1− η22

1− η33 0 η33


and define z1t = 1 if zt = 2 and z2t = 1 if zt = 3. In the measurement equation

ρ(L)

(
yt − θ0 − θ1z

1
t − θ2z

2
t − θ3

p∑
j=1

z1t−j

)
= εt

the last term over the sum of a fixed number p of lags is able to capture a bounce-back
effect in GDP growth after recessions.

4.2 Time-varying switching

4.2.1 Duration dependence and state-identifying restrictions

Covariates affecting the transition distribution render it informative in the sense that they
explain what drives the latent state. Early contributions, mainly in business cycle analysis,
are Diebold et al. (1994), Filardo (1994), McCulloch and Tsay (1994) and Filardo and
Gordon (1998)). Duration dependence is obtained when the persistence of states depends
on the number of periods that the current regime has been prevailing. In change-point
modelling, a time-varying extension is presented in Koop and Potter (2007), where regime
duration is modelled by a Poisson distribution.

Recently, a multi-country, multi-state extension in business cycle analysis is proposed
in Billio et al. (2016), in which the authors include weighted information on lagged business
cycle states of all euro area countries and the United States into the transition distribution.
The covariate x2t is a weighted average of lagged country-specific state indicators, x2t =∑n

i=1witzi,g,t−1, with wit being the trade-weight of country i.
Gaggl and Kaufmann (2014) work with a panel of 21 groups of US occupation data to

analyze the phenomena of jobless recoveries that characterizes the US labor market since
the early 1990s. They formulate a dedicated factor model for occupational growth with a
latent four-state indicator process in the mean factor growth rate, with transition matrix

ηt =


ηt,11 ηt,12 0 ηt,14
ηt,21 ηt,22 ηt,23 0

0 ηt,33 ηt,34
ηt,43 ηt,44


Interpreting states 1 and 3 as recessions and states 2 and 4 as expansions, the zero
restrictions imply a one-time change in business cycle phase-specific growth rates. The
change can only occur at a turning point, i.e. when exiting or falling into a recession.
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The explicit parametrization for the transition probabilities sets the reference state to
g0 = 1 and writes

ηt,12 =
exp (γ12,0 + γ12,1x2t + γ12,2t)

1 +
∑

g={2,4}
exp (X ′

tγ1g)
, ηt,14 =

exp (γ14,2t)

1 +
∑

g={2,4}
exp (X ′

tγ1g)

with Xt = (1, x2t, t), where x2t is GDP growth, and similar specifications for ηt,22 and
ηt,23. The restrictions γj2,2 ≤ 0 and γj4,2 ≤ 0 identify state 2 and 4 as expansions, given
that positive GDP growth x2t > 0 increases the probability of switching to state 2 or 4.
Time t helps identifying the break point. Therefore γ14,2 ≥ 0 and γ23,2 ≥ 0.

The results document that since the early 1990s recession, routine jobs have experi-
enced stronger job losses during recessions while non-routine jobs experienced weaker job
growth during expansions.

4.2.2 Shape restrictions

For some applications, e.g. when only few observations are expected to be assigned to
a state or to be available to estimate a transition to a state, it may be useful to im-
pose explicit restrictions on parameters in γ. This results in formulating a restricted prior
π(γ)1R. For example, Bäurle et al. (2016) analyze changing dynamics in a vector autore-
gression for Swiss macroeconomic variables when the interest rate approaches the zero
lower bound. The model specification allows for two states, G = 2 and sets g0 = 1. The
state probabilities are assumed state-independent

η2t =
exp (γxx2t + γ)

1 + exp (γxx2t + γ)

where x2t is the lagged level of the interest rate. By restricting γx < 0 the probability of
state 2 is increasing as the interest rate is approaching the zero lower bound.

Implicitly, the parameters γx ̸= 0 and γ define a threshold value for x2t, γ̃ = −γ/γx,
i.e. the value at which η2t = 0.5. If we may have an idea about an upper bound γ (which
should not be too high) and a lower bound γ (which could be e.g. between 0 and 1) for
the threshold γ̃, then

γ < γ̃ ≤ γ
γ < −γ/γx ≤ γ or − γxγ < γ ≤ −γxγ

These restrictions may be imposed on the prior distribution for γx, γ:

π (γx, γ) 1R = N (g0, G0) 1 (γ
x < 0) 1

(
−γxγ < γ ≤ −γxγ

)
where the restriction γx < 0 is a state-identifying restriction. These restrictions ren-
der γ and γx highly correlated, which may be taken into account when specifying
the prior moments. Figure 7 plots η2t against values for x2t. To implement a prior
threshold value at γ̃ = 0.8, stronger effects of the covariate imply a higher value for
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γ. Depending on the informativeness of the data, we may be more or less informa-
tive about γx. For example, in Bäurle et al. (2016) only few observations for x2t, the
interest rate, are available near the zero lower bound to estimate the transition to
state 2. Therefore, the authors use an informative prior on γx. Posterior draws are ob-
tained by sampling from conditional constrained posterior distributions π(γx, γ|x2t, zt) =
π(γ|γx, x2t, zt)π(γ

x|x2t, zt)1 (γ
x < 0) 1

(
−γxγ < γ ≤ −γxγ

)
, see Bäurle et al. (2016) for

details.

[Insert figure 7 around here]

5 Conclusion

In time series analysis, hidden Markov models introduce persistence in the mixture dis-
tribution. The persistence is induced by defining a latent state process, which evolves
according to a Markov transition distribution. This distribution may either be parame-
terized in a time-invariant or a time-varying way. We discuss the parametrization of the
logit or probit functional form to model time-varying transition distributions. Emphasis is
put on Bayesian estimation. We discuss in detail the design of state-invariant prior distri-
butions, in particular those of the parameters of the transition distribution. We describe
the random permutation sampler with which we obtain a sample from the unconstrained
posterior distribution. The evaluation of estimation time and sampler efficiency between
using the logit or the probit functional form reveals a strong trade-off. While estimation
time does not increase significantly with the number of latent states when working with
the logit functional form, there is a tenfold increase in estimation time when working with
the probit functional form when increasing the number of hidden states from 2 to 3. On
the other hand, draws from the probit symmetric sampler of Burgette and Hahn (2010),
are as efficient as from the thinned out logit posterior. The researcher may therefore opt
to work with the logit functional form to save on estimation time for models with more
than 2 latent states, and to thin out considerably the posterior draws to reduce sampling
inefficiency.

We illustrate how explicit economic interpretation may be obtained from posterior
inference by imposing structural or dynamic restrictions on the transition distribution of
the state process. Prior knowledge may also be imposed in form of restrictions onto the
prior distribution for the parameters of the transition distribution. A restricted, state-
identified prior then calls for restricted sampling procedures to draw from the posterior.

An attractive feature of Markov switching models has not been applied so far in time
series analysis. Results in the literature derive conditions under which a stationary state-
specific process can be combined with a non-stationary, explosive process. As long as the
latter one does not prevail for too long nor does recur too often, the process of time series
may still converge to finite moments in the indefinite future. This represents an interesting
avenue for future research.
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Tables

Table 1: Time in minutes for 1,000 draws and inefficiency factors for posterior samples
retaining all draws and only every 5th draw.

logit probit
G = 2
Time 3.2 3.4
Inefficiency g = 2 g = 2

all 5th all 5th

γg′g =


γx
1g

γx
2g

γ1g
γ2g


80.83
53.65
39.85
41.07

22.31
9.60
10.00
8.19

86.64
44.59
36.37
17.61

18.95
9.64
6.00
3.17

G = 3
Time 3.4 38.6
Inefficiency g = 2 g = 3 g = 2 g = 3

all 5th all 5th all 5th all 5th

γg′g =


γx
1g

γx
2g

γx
3g

γ1g
γ2g
γ3g


19.85
13.19
16.95
9.12
14.82
22.05

2.60
3.83
2.78
2.19
3.85
5.76

12.59
19.43
19.53
16.56
21.53
9.86

2.76
2.37
4.30
2.81
4.13
2.38

3.66
2.15
3.49
2.94
3.01
2.55

1.68
0.65
1.03
0.84
1.22
0.60

2.28
3.44
2.86
2.65
3.17
3.13

0.87
1.13
1.08
1.05
0.94
0.61
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Figure 5: Autocorrelation of state-identified posterior draws for γg, G = {2, 3}.

32



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ρ(m)
g

ρ(m
)

g′
, g

′≠
 g

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

ρ(m)
g

lo
g 

σ2 g(m
)

(a) (b)

−0.4 −0.2 0 0.2 0.4
0

2

4

6

8

10

12

14

16

18

θ
0g

−0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

ρ
g

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γx
g′2

 

 

g′=1
g′=2
g′=3
prior

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γx
g′3

(c) (d)

Figure 6: Scatter plots of posterior output, G = 3. First line: Unsorted output. Second
line: State-identified output, marginal posterior distributions and prior distribution for
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creasing covariate effect.

33


	cover
	PartII_Chapter6 (3)

