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1 Introduction

Capturing instabilities in the economic environment or in the behavior of economic

agents is a challenging problem in modern macroeconometric analysis. Periods such

as the great moderation during which the volatility of major economic variables

strongly declined and other occurrences such as the recent shift form conventional to

unconventional monetary policy measures by central banks who were constrained

by the lower bound on nominal interest rates, call into question the assumption

of fixed parameters present in most traditional econometric models. Instead, the

relationships that describe an economy might well be evolving over time as the

behavior of economic agents is likely to adapt to changes of the ”rules of the game”,

such as policy changes or modifications of the institutional settings. This point was

famously emphasized in the Lucas critique (Lucas, 1976). Such variation in the

structural relationships naturally lead to shifts in the reduced form parameters of

macroeconometric models, such as vector auto regressions (VAR). Indeed, using

a battery of tests Stock and Watson (1996) found evidence of instability for a

substantial number of US macroeconomic time series, supporting these doubts.

A widely used method to approach these issues are time-varying parameter (TVP)

models in combination with stochastic volatility such as the TVP-VAR proposed by

Cogley and Sargent (2005) or Primiceri (2005).1 These models offer the flexibility

to handle transitory as well as permanent changes in the coefficients and/or in

the covariance structure of the error terms. However, this great flexibility goes

hand in hand with the risk of over-fitting as (i) the number of parameters to be

estimated grows exponentially and (ii) not necessarily all the relationships among

the variables are truly time-varying. It is of course important to capture possible

breaks in the model’s parameters but at the same time it is inefficient to assume

time variation where there is none. Different approaches to overcome these problems

have been proposed in the recent literature. Belmonte et al. (2014) and Bitto and

Frühwirth-Schnatter (2016) among others apply Bayesian shrinkage priors to the

innovation variances in the state equation of the parameters. This allows them to

discriminate between time-varying and constant parameters by eventually shrinking

the state variance of a constant parameter towards zero. Another important issue

with TVP-VAR is the size of the model’s underlying state space representation. A

common assumption in TVP models is that each coefficient enters the model as a

state variable typically evolving as a random walk. This allows for a high degree

1See e.g. Nakajima (2011) for an overview of the Methodology.

2



of flexibility in the parameter’s time-varying behavior but leads to a large number

of states that have to be filtered from the data. The question arises whether this

great extent of flexibility is indeed necessary, as already Cogley and Sargent (2005)

discovered that the estimated time-varying coefficients showed strong similarities

in their behavior. A new strand of the literature takes advantage of this feature,

either by directly introducing a factor structure in the TVP-VAR model to reduce

the number of state variables such as Stevanovic (2016), or by working with a rank

reduced state covariance matrix as de Wind and Gambetti (2014) or Eisenstat et al.

(2018). The latter in turn also imposes a factor-like structure upon the model’s

coefficients. Both approaches rest on the assumption that the parameters share a

high degree of commonality in their time-varying behavior and that the number of

sources for parameter instability is in fact (much) smaller than the actual number of

parameters of the model.

The aim of this paper is to combine these two recent developments and adopt the

factor-TVP structure for the VAR parameters together with shrinkage priors in the

estimation of the factor loadings. The introduction of the factor structure leads

to a tremendous reduction of the state space as the time variation in the model

parameters is fully captured by a small set of factors. The application of shrinkage

priors is based on the notion that only a subset of the unobserved parameters is truly

time-varying while the remainder is in fact constant, implying that a substantial

fraction of entries in the factor loading matrix is essentially equal to zero. The

estimation of the factor loadings is based on a novel generation of Normal-Gamma

priors as applied in Bitto and Frühwirth-Schnatter (2016) in the context of TVP

models or in Huber and Feldkircher (2017) for VARs with constant parameters.

Their advantage is that they provide a high degree of flexibility which ensures that

non-zero entries are not too strongly shrunk towards zero, allowing to properly

discriminate between time-varying and constant but at the same time also between

significant and insignificant parameters. In sum, this delivers a model that is able

to capture structural breaks (or trends) by allowing for time variation wherever

necessary but in a well structured way. This reduces model complexity and together

with the application of shrinkage offers a remedy for the over-fitting problem typically

occurring in these types of models. It further allows working with larger sets of

endogenous variables while TVP-VARs are usually applied to small systems. In a

Monte Carlo study with simulated data the proposed sampler shows its ability to

correctly estimate the degree of time variation and to correctly distinguish between

truly constant and truly time-varying parameters.
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An additional problem that arises in the context of TVP models is how to test

for stability of the underlying dynamic system. As the eigenvalue analysis of the

”time-frozen” coefficient matrices borrowed from VAR with constant parameters is

non-informative with regard to the dynamic properties of the system (an issue that

is typically ignored in the existing literature) a correct alternative needs to be found.

Neusser (2018) addresses this question and advocates the analysis of the Lyapunov

exponents as a valid solution.

In an application for Switzerland the model is estimated with monthly data to

study the effect of an appreciation shock on the economy and its evolution during

the lower bound period for the short-term nominal interest rate. Although the

estimated time variation in the coefficients is muted, the model captures a stark

drop in the effect of the exchange rate shock on the nominal interest rate once it

has been lowered to basically zero. The response of the remaining variables also

changes but to a much lesser extent. A forecasting exercise based on the same

dataset for Switzerland further reveals a superior forecasting performance of the

factor-TVP model (henceforth FacTVP) compared to the traditional TVP-VAR.

A second application is based on historical inflation data for the United Kingdom,

Norway, Sweden and the United States covering almost 200 years of history. It clearly

emphasizes the role of time variation among model parameters when working with

time series covering a longer time span. The remainder of the paper proceeds as

follows. Section 2 contains the specification of the model and the prior distributions.

Section 3 presents the Bayesian MCMC sampling scheme. Section 4 summarizes the

results of a Monte Carlo study with simulated data. Section 5 presents an application

with empirical data for the Swiss economy while Section 6 presents results for an

application with long run inflation series, and Section 7 concludes.

2 Model

2.1 Model specification

Consider the following TVP-VAR with stochastic volatility (SV) in the spirit of

Cogley and Sargent (2005) or Primiceri (2005),

yt = b0,t +

p∑
j=1

Bj,tyt−j + et, (1)
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where yt is a N-dimensional vector of non-trending variables observed at time t,

with time-varying intercepts b0,t, and coefficient matrices Bj,t. Further the N × 1

vector of one step ahead prediction errors et is assumed Gaussian with zero mean

and time-varying covariance matrix Σt, i.e.

et ∼ N(0,Σt). (2)

Defining the regressor matrix as Xt ≡
[
IN ⊗ (1, y′t−1, ..., y

′
t−p)

]
and collecting the

time-varying coefficients in the vector bt yields a more parsimonious formulation of

equation (1):

yt = Xtbt + et, (3)

this helps simplifying the notation throughout the rest of the paper. The length

of the vector bt is equal to the number of coefficients of the VAR and depends on

the number of included variables N and the lag order p , i.e. C ≡ pN2 + N (if

a constant is included in the model). In contrast to the traditional formulation

of TVP-VAR models, where each non-constant parameter enters the model as a

state variable and evolves as a random walk, the propagation of the autoregressive

coefficients (the elements of bt) in the present model is different. Each coefficient

builds the sum of two components: a constant component λc that is independent of

time, and a time-varying component λfft, where ft describes a k-dimensional vector

of latent factors that govern the time variation of the coefficients. The number of

factors is assumed to be substantially lower than the total number of autoregressive

coefficients such that k << C, further we assume that the time-varying behavior

of all coefficient is fully described by these k factors. The factor themselves are

assumed to evolve as independent random walks, this is similar to the traditional

formulation of TVP-VARs where the evolution of the state variables is governed by

a random walk structure to allow for transitory as well as permanent shifts in the

VAR parameters. The propagation of the model’s autoregressive coefficients in bt is

therefore governed by

bt = λc + λfft (4)

ft = ft−1 + ηt (5)

Such a formulation implies that the possible sources of parameter instability are

reduced from C to k. This structure is based on the idea that the time variation in

the different VAR coefficients shares a high degree of commonality and therefore,
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can be well described by a small set of common factors. Empirical evidence of

such a common behavior of the model’s parameters is as old as the TVP-VAR

models. Cogley and Sargent (2005) were among the first to discover a high degree

of commonality in the behavior of the coefficients. Later on Canova and Ciccarelli

(2009) introduced reduced-rank time variation in the context of multi-country VARs

and more recently Stevanovic (2016) developed a factor-TVP-VAR where all the

model’s coefficients are time-varying possess a factor representation. He provides

empirical evidence for the model’s ability to capture time variation in macroeconomic

data. The present work extends the FacTVP setup by introducing recently developed

Bayesian shrinkage priors for the factor loadings that allow to better discriminate

between constant and time-varying coefficients. This helps overcoming the problem

of over-fitting in the presence of constant true parameters. The approach is similar

to Belmonte et al. (2014) and Bitto and Frühwirth-Schnatter (2016) who work with

shrinkage priors for the innovation variances to limit the degree of time variation in

the estimated coefficients. Kastner (2016) uses a similar setup in a factor stochastic

volatility model.

In their work Eisenstat et al. (2018) show that working with a reduced-rank covariance

matrix for the innovations of the state equation leads to a law of motion of the

exact same form, as the reduction of the rank imposes a factor-like structure upon

the time-varying parameters in bt. Note that there is no time-varying idiosyncratic

component in bt, as adding this would introduce an additional random effect at each

point in time which would no longer allow us to discriminate between time-varying

and constant parameters and secondly, it would complicate the estimation of the

factors by introducing additional identification issues. Modeling the time-varying

coefficients based on a factor structure reduces the dimension of the state space

system tremendously, this would allow to estimate the model with a larger number

of endogenous variables.

Combining equations (3) and (4) leads to an extended version of the observation

equation that relates the unobserved factors directly to the observable variables in

yt,

yt = Xtλ
c +Xtλ

fft + et. (6)

Together with the law of motion of the factors and conditional on the factor loadings

as well as the time-varying covariance matrix of the VAR innovations this forms a

linear Gaussian state space system. This can be used to recover the factors from the
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data using the algorithm of Carter and Kohn (1994) or the more efficient precision

sampler proposed in Chan and Jeliazkov (2009).

Following Primiceri (2005), the time-varying error covariance matrix is decomposed

into two parts

Σt = A−1
t HtA

−1′

t (7)

where Ht is a diagonal matrix and At is a lower diagonal matrix with ones on the

diagonal. Ht captures the volatility states, while At contains the covariance states

(or rather the inverse). This implies that the reduced form innovations et are linear

combinations of N independent standard normal increments εt,

et = A−1
t H

1
2
t εt. (8)

Note that the innovations εt often are assigned a structural interpretation (based on

the lower triangular structure of At this yields the well known Cholesky type timing

restrictions), however, the decomposition holds in general even if they cannot be

assigned any structural interpretation. Let ht be a vector containing the natural

logarithm of the volatilities, i.e. the diagonal elements of Ht, and collect the non-fixed

elements of At in a vector at. To reduce the dimension of the state space even further,

the covariance states possess an identical factor structure as the autoregressive

coefficients. Instead of N(N − 1)/2 covariance states there are only ka covariance

factors to be filtered from the data. This leads to a similar state space representation

as above:

at = λca + λfaf
a
t (9)

fat = fat−1 + ηat (10)

Finally, the log volatilities ht are assumed to evolve as random walk, which is analogue

to the specification used in Primiceri (2005).

ht = ht−1 + νt (11)

An interesting further step would be to reduce the dimension of the volatilities as

suggested in Carriero et al. (2016). The gains of the reduction is smaller here because

the number of volatilities in the model grows linearly with the number of included

variables. But once the model is applied to larger data sets this might become crucial
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and is an interesting path for future work. The innovations of the state equations

are assumed to be Gaussian with zero mean and block diagonal covariance matrix

V = V ar


εt

ηt

ηαt

νt

 =


IN 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

 (12)

Factor normalization is achieved by setting Q = κQ · Ik and S = κS · Ika , due to the

random walk structure κQ and κS are set to small numbers. This does however not

limit the extent of time variation but it ensures that the scale of the factor loadings

is not getting too small, and facilitates estimation.

2.2 Separating the intercepts

In order to decouple the time-varying intercepts from the autoregressive VAR coeffi-

cients the model is slightly adapted. In this alternative specification an additional

set of factors f 0
t governing only the time variation of the intercepts is introduced.

b0,t = λc0 + λf0f
0
t (13)

b−0,t = λc + λfft (14)

This representation allows to estimate a model where only the intercepts or only the

autoregressive coefficients can move over time. This feature is helpful in a situation

where the data appear to have breaks in the mean but where their dynamic behavior

such as the persistence seems to be the same over the observed sample period, or in

cases where one wants to allow the time-varying intercepts to enter the model as

separate state variables (by setting k0 = N and λf0 to the identity matrix).

The factors related to the intercepts can then simply be added to the states for the

autoregressive coefficients as they both evolve as independent random walks[
f 0
t

ft

]
=

[
f 0
t−1

ft−1

]
+

[
η0
t

ηt

]
(15)

where analogously to the original specification above the innovations are assumed to

be orthogonal across factors.
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2.3 Stability in TVP models

The notion of stability in time-varying parameter models is a delicate point that

requires careful thought. Early advances in the literature addressing this issue

are Brandt (1986) and Bougerol and Picard (1992). The typical way to deal with

questions concerning the stability of a model found in the literature is to work

with ”time frozen” system matrices and to mimic what one would do in the case

with constant parameters i.e. checking that the eigenvalues of the relevant system

matrix lie within the unit circle (eigenvalue-condition). However, this is not the right

way to proceed, as in an environment with time-varying parameters the eigenvalues

are non-informative about the stability of the model. The problem is that even

a system fulfilling the eigenvalue-condition at each point in time may still show

an explosive behavior in the long run (see e.g. Neusser (2018), Elaydi (2013) or

Francq and Zaköıan (2001) for examples). At the same time, a system that violates

the eigenvalue-condition over certain periods of time does not necessarily possess

explosive properties in the longer run. In the context of TVP models, stability is

not a property that should be studied at each point in time separately by inspecting

the properties of the ”time frozen” coefficients. Rather, it should be evaluated as

a global property of the whole system including the coefficient matrices B1,1 up to

Bp,T . A correct alternative to the eigenvalue-condition in the TVP framework are the

system’s Lyapunov exponents as discussed in Francq and Zaköıan (2001) or Neusser

(2018). Rewriting the VAR stated in equation (1) in its companion form we obtain

Yt = BtYt−1 + Et

where Yt =
[
y′t, y

′
t−1, . . . , y

′
t−p+1

]′
and Et = [e′t, 0, . . . , 0]′. The top Lyapunov exponent

of the system is then defined as

ϕ = lim
T→∞

inf
1

T
log ||

T∏
t=1

Bt|| (16)

where || · || is a suitable norm. Stability is a function of the product of the system

matrices Bt over all periods of the sample. The system is said to be stable whenever

ϕ is negative. In principle this enlarges the scope of interesting models, because

it allows for ”time frozen” coefficient matrices with explosive behavior in certain

periods, as long as the system as a whole remains stable.

9



2.4 Prior specification

Given the different structure of the model compared to traditional TVP-VAR models

also the prior distributions applied here are different. For the estimation of the factor

loadings I rely on two alternative versions of shrinkage priors. In the following, the

prior distributions used are explained in more detail.

2.4.1 Priors for the factor loadings

Conditional on the remaining parameters of the model λc and λf can be recovered

from a linear regression model. Defining λ ≡
[
λc λf

]
and slightly rearranging

equation (6) leads to

yt =

[ 1

ft

]′
⊗Xt


︸ ︷︷ ︸

≡Zt

vec (λ′) + et

Since the dimension of λ can become quite large as the number of variables N , the

number of lags p or the number of factors k grows, one can face over-fitting issues

when estimating the factor loadings. To overcome these problems and to support the

view that potentially some elements in bt do not vary over time Bayesian shrinkage

priors that were recently proposed in the literature are introduced for the estimation

of λ. One way to introduce shrinkage in this model is to follow the line of Huber and

Feldkircher (2017) who extend the Normal-Gamma prior proposed by Griffin and

Brown (2010) and apply it to a constant parameter VAR with stochastic volatility.

The Normal-Gamma prior is closely related to the Bayesian LASSO by Park and

Casella (2008) but allows for additional flexibility which leads to richer shrinkage

properties. For the factor loadings the Normal Gamma prior (henceforth NG) writes

π
(
λ
{s}
rj |τ

{s}
rj

)
∼ N

(
0, τ

{s}
rj

)
, π

(
τ
{s}
rj |ρ2

j

)
∼ G(νj, νjρ

2
j/2)

π(ρ2
j) ∼ G(aj1, aj2)

π(νj) ∼ Exp(1)

where the index s denotes the form of shrinkage. Similar to the model specifications

in Huber and Feldkircher (2017) I introduce either global, (VAR-)equation-specific,

factor-specific, or lag-specific shrinkage. To facilitate the notation λ{s} denotes a

reshuffled version of the original λ that collects all the elements of λ belonging to
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the same level of common shrinkage in the same column. The number of rows (r)

and columns (j) of λ{s} depends on the form of shrinkage. τ {s} contains the prior

variances of the factor loadings and has exactly the same shape as λ{s}.

1. Global shrinkage: Under global shrinkage the same shrinkage parameters

are applied to all factor loadings. In the notation introduced above this means

that λ{s} is equal to vec(λ′), i.e. a vector of length equal to the total number

of factor loadings.

2. Equation-specific shrinkage: In contrast to global shrinkage, different

shrinkage parameters ρ2
j and νj and possibly also different hyperparameters

aj1, a
j
2 are specified for each equation (j = 1, . . . , N) of the VAR. λ{s} is a matrix

with N columns and as many rows as there are factor loadings per equation

((k + 1)pN).

3. Factor-specific shrinkage: The same shrinkage parameters are applied to

all the factor loadings related to the same factor. In this case λ{s} = λ and no

reshuffling takes place.

4. Lag-specific shrinkage: All factor loadings related to the same lag of the

VAR are treated in the same way and λ{s} is a matrix the columns of which

contain all the loadings related to the same lag, whereby the ordering of the

coefficients in column j corresponds to vec(B′j). The number of rows of λ{s} is

equal to p(k + 1)N2.

An alternative way to prohibit over-parametrization of the model is to perform

stochastic search variable selection (SSVS) as in George et al. (2008). This can be

achieved by placing a hierarchical mixture prior on the elements of λ that assigns some

non-zero probability to all the possible submodels of the original model. Updating

the prior with the likelihood of the data will then increase the weights on those

models that are favored by the data. Given the dimensions of the problem at hand it

is in general infeasible to compute the posterior probability of every single submodel,

but it is possible to simulate a Markov chain sample in which the submodels that

are highly supported by the data are visited more often. The hierarchical prior takes

on the form

π(λrj|γ) = (1− γrj)N(0, τ0) + γrjN(0, τ1) (17)

π(γrj) = Bernoulli(prj) (18)

11



The prior variances τ0 and τ1 are set such that τ0 << τ1, this implies that when

γrj = 0 λrj is restricted to be close to zero and left unrestricted for γrj = 1. Here prj

denotes the a priori probability that λrj is unrestricted.

2.4.2 Factor loadings for the covariance states

The factors loadings for the covariance states, λca and λfa can essentially be treated in

the same way as those associated with bt. The only thing that needs to be adjusted,

is the regression model used in the estimation. Let λa ≡
[
λca λfa

]
and ŷt ≡ yt−Xtbt,

then conditional on bt and ht the covariance states can be recovered from

Atŷt = et

ŷt = − (At − IN) ŷt + et,

Given the factor structure of At and applying the same transformation as above we

obtain

ŷt =

[ 1

fat

]′
⊗ X̃a

t


︸ ︷︷ ︸

≡Za
t

vec (λ′a) + et

where X̃a
t is formed of the columns of Xa

t = −
(
IN−1 ⊗ ŷ′t;2:N

)
related to the non-

constant elements of At (i.e. the ones on the diagonal and the zeros above the

diagonal). The priors that are used in the estimation are of the same form as

described above. For the NG prior the shrinkage level can be chosen to be either

global, equation- or factor-specific.

2.4.3 Innovation variances of volatility states

The specification of the prior variances for the innovations of the volatility states,

W = diag(w2
1, . . . w

2
N), is given by

w2
i ∼ IG (dfw, Vw) (19)

where IG stands for the inverse Gamma distribution, with degree of freedom pa-

rameter dfw and scale parameter Vw. The scale parameter Vw is chosen such that

the prior mean of w2
i is equal to 0.01. This is a value that is often found in the
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related literature and it insures that the changes in the log-volatilities stay in a

reasonable range. An alternative approach where W is assumed to be a full matrix

and the scaling parameter for the innovation variances is estimated as suggested in

Amir-Ahmadi et al. (2016) is described in Section B of the Appendix.

3 Bayesian Inference

To describe the estimation of the model, I introduce some additional notation. While

yt denotes observations in period t, yt indicates observations up to period t, this

applies to all other variables. All the parameters as well as hyperparameters are

included in Θ = {λ, λa, Q, S,W, ϑ}, where all the hyperparameters depending on the

chosen model specification enter in ϑ.

3.1 Posterior sampler

To obtain a sample from the joint posterior distribution

π(fT , fTa , h
T ,Θ|yT ) ∝ L(Y T |fT , fTa , hT ,Θ)π(fT , fTa , h

T |Θ)π(Θ)

the following algorithm is applied:

(i) Draw the volatilities:

(a) Draw the volatility states hT from π(hT |yT , fT , fTa ,Θ). This step uses the

approach of Kim et al. (1998) in combination with the precision sampler of

Chan and Jeliazkov (2009) to efficiently generate draws from a nonlinear

state space system.

(b) Draw the covariance matrix of the volatility state innovations W .

(ii) Draw the VAR coefficients:

(a) Draw fT from π(fT |yT , fTa , hT ,Θ) using the precision sampler.

(b) Draw λc, λf from π
(
λ|yT , hT , fT , fTa ,Θ(−λ)

)
and update the hyper param-

eters.

(c) Compute the Lyapunov exponent and verify the condition ϕ < 0. Other-

wise discard the draw.

(iii) Draw aT :
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(a) Draw fTa from π(fTa |yT , fT , hT ,Θ) using the precision sampler.

(b) Draw λca, λ
f
a from π

(
λa|yT , fT , fTa , hT ,Θ(−λa)

)
and update the hyper pa-

rameters.

Additional details for the single steps are presented in more detail below.

3.2 Sampling the time-varying factors

To draw from the conditional posterior of the factors

π(fT |yT , fTa , hT ,Θ)

we first subtract the constant component from the observed variables which yields a

re-centered version of the data denoted by

yft ≡ yt −Xtλ
c.

One can then apply the precision sampler of Chan and Jeliazkov (2009) for linear

state space systems on

yft = Xtλ
fft + et (20)

ft = ft−1 + ηt (21)

where the increments et and ηt are normally distributed[
et

ηt

]
∼ N

(
0,

[
Σt 0

0 Q

])

to efficiently obtain a posterior draw of fT . The precision sampler of Chan and

Jeliazkov (2009) is presented in more detail in Appendix A. The set of factors

associated with the covariance states, fat , can be drawn in the exact same manner

from π(fTa |yT , HT , BT ,Θ) using the state space representation,

ŷft = Xa
t λ

f
af

a
t + et (22)

fat = fat−1 + ηat , (23)

where ŷft ≡ ŷt −Xa
t λ

c
a denotes the re-centered version of ŷt.
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3.2.1 Scaling the factors: Data augmentation

Since, conditional on the data, only the mean of the autoregressive coefficients bt but

not the mean of the factors ft and the factor loadings λ are identified, the parameter

space is expanded by the working parameter f̄ capturing the factor mean of ft.

This data augmentation step stabilizes the sampler by ensuring that the posterior

mean of the factors stays centered around zero. Due to the random walk structure

of the factors we can write the factor in period t as f ∗t = f̄ +
∑t

j=1 ηt, where f̄

is distributed as N(f̄ , t · Q). Assuming a Normal prior for f̄ , π(f̄) ∼ N(0, B) its

conditional posterior is π(f̄ |·) ∼ N(µf̄ ,Σf̄ ) with

Σf̄ =
[
[1T ⊗ Ik]′[τ ⊗Q]−1[1T ⊗ Ik] +B−1

]−1

µf̄ = Σf̄
[
[1T ⊗ Ik]′[τ ⊗Q]−1vec(f ∗T )

]
,

where τ is a vector of length T with the tth element equal to τt = t−1. The sampling

of ft is then based on the following steps: first f ∗t is drawn as outlined above, then f̄ is

drawn from its conditional posterior and finally the factor is centered by subtracting

f̄ from f ∗t : ft = f ∗t − f̄ . The same identification issue applies to the covariance

factors, and therefore, fat is demeaned in the same way.

3.3 Factor loadings

For the different prior specifications described in Section 2.4.1 the conditional posterior

of the factor loadings is always Gaussian and is described by

π (vec (λ′)| ·) ∼ N
(
m,V

)
where the posterior variance V and mean m are equal to

V =

[
T∑

t=p+1

Z ′tΣ
−1
t Zt + V−1

]−1

m = V

[
T∑

t=p+1

Z ′tΣ
−1
t yt

]
.

V is a diagonal matrix containing the prior variances for each element in λ.
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3.3.1 Update the hyperparameters

Under the Normal-Gamma prior:

The posterior distributions for the hyperparameters of the NG prior for the different

shrinkage specifications described in Section 2.4.1 can be summarized as follows.

The conditional posterior distributions of τ
{s}
rj and ρ2

j follow a generalized inverse

Gaussian and a Gamma distribution respectively, with

π
(
τ
{s}
rj |λrj, ρ2, νs

)
∼ GIG

(
νs −

1

2
, νsρ

2
j , λ

2
rj

)
π(ρ2

s|τ
{s}
rj , νs) ∼ G

(
as1 + νsC, a

s
2 +

νs
2
Sj
)

where the same notation as introduced in Section 2.4.1 applies and Sj =
∑R{s}

r=1 τ
{s}
rj

equals the sum over all elements in column j of τ s, with R{s} equal to the number of

rows in λ{s} and τ {s}.

The conditional posterior of νj does not inherit a well-known form, therefore sampling

requires a Metropolis Hastings step. Following Huber and Feldkircher (2017) the

proposal density qν is chosen to be log-normal with the parameters µν = ln(νj) and

σν = κν being, respectively, the mean and the standard deviation of the underlying

normal distribution. The standard deviation is used as tuning parameter to adjust

the acceptance rate during the first half of the burn-in phase. The proposal ν∗j is

accepted with probability

min

[
1,
qν(νj|ν∗j )π(ν∗j )(ν∗j ρ

2
j/2)ν

∗
j Γ(νj)

qν(ν∗j |νj)π(νj)(νjρ2
j/2)νjΓ(ν∗j )

Pν
∗
j−νj
j

]

where Γ(·) denotes the Gamma function and Pj =
∏R{s}

r=1 τ
{s}
rj denotes the product

over all τ
{s}
rj related to the same level of common shrinkage.

SSVS:

Setting prj = p0 for all r, j and assuming that the elements of λ are independent

a priori leads to a conditional posterior for the factor loadings that is Gaussian as

described above and hence the posterior update of the loadings is exactly as described

at the beginning of this section. The update of the hyperparameters of the SSVS

prior is as follows. The conditional posterior of a generic γrj conditional on all the
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other elements γ(−rj) is

π(γrj|γ(−rj), λ, ·) ∼ Bernoulli(u1
rj/(u

0
rj + u1

rj))

u0
rj = p(λrj|γ(−rj), γrj = 0)(1− p0)

u1
rj = p(λrj|γ(−rj), γrj = 1)p0

If the components of λ are assumed to be independent a priori, then

û0
rj =

1

τ0

exp

(
− λ̄2

l

2τ0

)
(1− p0)

û1
rj =

1

τ1

exp

(
− λ̄2

l

2τ1

)
p0.

The hyperparameter controlling the prior variance is then simply updated by setting

it equal to τrj = (1− γrj)τ0 + γrjτ1.

3.3.2 For the alternative specification with separated intercepts

Under the alternative model specification with separate dynamics for the intercepts

and the autoregression coefficients, the estimation of the factor loadings proceeds in

two steps. First, conditional on b−0,1:T , λ0 ≡
[
λc0 λf0

]
is estimated from

y0
t =

[
1

f 0
t

]′
︸ ︷︷ ︸
≡Z0

t

vec (λ′0) + et

where y0
t ≡ yt − X̃tb−0,t and X̃t does not contain the columns of Xt related to the

intercepts whose elements are all equal to one. Due to the smaller number of elements

in λ0 only global shrinkage is imposed under the Normal-Gamma prior.2 The second

step consists of estimating λ conditional on b0,1:T from

ỹt =

[ 1

ft

]′
⊗ X̃t


︸ ︷︷ ︸

≡Z̃t

vec (λ′) + et

2There is no distinction between elements associated with a certain equation or factor, instead the
same set of shrinkage parameters are applied to all the elements of λ0.
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where ỹt ≡ yt − b0,t. The conditional posterior of both λ0 and λ is Gaussian

and analogue to the one described above. The hyperparameters are then updated

according to the same steps as they are described in the previous section.

3.4 Controlling time variation: Data augmentation

A critical issue with TVP models is how to control the overall amount of time

variation for each parameter, especially because the data might not always be very

informative in that respect. In the traditional TVP-VAR literature this is achieved

by selecting the scaling factors for the prior variances of the innovations accordingly

(see also Section B of the Appendix). In the present setup this issue is a little bit

more involved because of the factor structure for the autoregressive coefficients bt

and the covariance states at. A measure for the amount of time variation is given by

Ω = λfQλf
′
.

To stabilize the sampler at reasonable values of Ω, another data augmentation is

used, and the working parameter Ω∗ is introduced. At each iteration we draw a new

value Ω∗ from

π(Ω|·) = IW (V Ω, dΩ),

where V Ω = V Ω + 0.5
∑T

t=1(bt − bt−1)(bt − bt−1)
′ and dΩ = dΩ + T

2
and rescale the

factor loadings by

D =


(

Ω∗1
Ω1

) 1
2 · · · 0

...
. . .

...

0 · · ·
(

Ω∗C
ΩC

) 1
2


An appropriate choice of V Ω and dΩ helps to control the overall amount of time

variation for the autoregressive coefficients. The same procedure is applied to the

covariance states at.

4 Monte Carlo study

In order to illustrate the ability of the proposed sampler to correctly distinguish

between constant and time-varying parameters, this section contains a Monte Carlo

exercise based on a set of 100 simulated histories. A model with two factors governing

the time variation of the autoregressive coefficients and one additional factor for the
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covariance states serves as data generating process. The number of variables is set to

N = 5. To introduce a fraction of completely insignificant coefficients 20 percent of

the elements in bt are set to zero over the whole sample period, this implies that the

corresponding row of the factor loading matrix contains only zeros. The probability

for a non-zero loading of the remaining coefficients is set to 0.6 for the first factor and

0.4 for the second factor. The probability for a non-zero loading on the covariance

factor is set to 0.6 for each element in at. For every simulation the position of the

zero and non-zero factor loadings is randomly assigned. To ensure stationarity and

rule out explosive behavior, only paths for bt for which the corresponding Lyapunov

exponent is negative are considered. All the simulations with a positive Lyapunov

exponent are discarded and replaced with a stable simulation. The FacTVP model

is then estimated twice for each simulated data set, once with the NG prior and

once with the SSVS prior. The hyperparameters for the Normal-Gamma prior are

set to a1 = 0.01 and a2 = 0.01, while the respective ones for the SSVS prior are

set to τ0 = 0.01 and τ1 = 0.5. The Gibbs sampler is run for 6,000 iterations after

a burn in phase of 4,000 iterations, and every third draw is stored.3 The degree of

shrinkage is stronger under the Normal-Gamma prior. Table 1 contains the relative

root mean squared errors (RMSE) of the NG relative to the SSVS prior averaged over

all parameters, and all simulations (a value below unity implies that NG outperforms

SVSS). It turns out that the NG prior is slightly superior in case of estimating the

autoregressive coefficients while the estimates for the covariance states based on the

SVSS prior show a higher accuracy on average. In the case of the volatilities the two

models perform almost equally well, which is not surprising because no shrinkage is

involved here.

Table 1: Relative RMSE (average over all coefficients and time periods) of the
estimation with the NG prior in comparison to the estimation with the SSVS
prior along with the mean RMSE for the SSVS prior.

bt at ht

Mean 0.9244 1.0576 1.0047

Min 0.8119 0.8641 0.9131

Max 1.0632 1.4152 1.1020

RMSE 0.0670 0.1154 0.3287

Figure 1 computes the difference between the estimated and the true time variation

3I have been working with longer chains, but due to fast convergence of the model I successively
lowered the number of draws to economize on computational time.
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(measured as the standard deviation of each coefficient over the entire sample period)

for bt and at for all the simulations based on the NG prior. The coefficients are

ordered according to their true degree of time variation, starting with those that

exhibit a strong variation on the left hand side of the figure. The model tends to

underestimate the degree of time variation for the parameters that are strongly

time-varying, while it slightly overestimates the time variation for the weakly varying

and constant parameters. This observation holds equally for the two different priors.

Figure 1: Difference between estimated and effective time variation for bt (left
panel) and at (right panel) for the FacTVP model estimated with the NG prior.
Coefficients appear in descending order of simulated time variation.

4.1 Comparison to traditional TVP-VAR

For each simulation I estimate a traditional TVP-VAR following the approach of

Primiceri (2005), and compute the root mean squared errors for all the parameters

of interest and compare them to the estimates above. The errors are computed as

the difference between the estimated and the simulated coefficients for each posterior

draw. A training sample of length T0 = 40 is used to initialize the priors. The

relative RMSE defined as the RMSE of the FacTVP model estimated with the NG

prior divided by the RMSE of the TVP-VAR are shown in Table 2.
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Table 2: Relative RMSE (average over all coefficients and time periods) of the
FacTVP in comparison to the TVP-VAR along with the mean RMSE for the
TVP-VAR.

bt at ht

Mean 0.6596 0.6774 0.9929

Min 0.4639 0.4093 0.8379

Max 0.9844 1.0153 1.3971

RMSE 0.0938 0.1801 0.3326

There is an obvious gain in precision for FacTVP for both, the autoregressive

coefficients bt as well as the covariance states at. This gain is mainly related to the

fact that parameters that are effectively constant or exhibit only a minor degree

of time variation are fitted much better in the case of the FacTVP model. This is

well illustrated in Figures 2 and 3 that show the difference between the estimated

and the true time variation for bt and at for all the simulations. The coefficients are

ordered according to their true degree of time variation, starting with those that

exhibit a strong variation on the left side of the figure (the left panels correspond to

the two panels of Figure 1). The FacTVP model with the NG prior has a tendency

to slightly underestimate the degree of time variation for the parameters that vary a

lot over time (blue squares on the left hand side of the left panel of Figure 2 and 3).

On the other hand, the degree of time variation for parameters which only slightly

vary over time or are constant is relatively precisely estimated while the TVP-VAR

has a strong tendency of overestimating the time variation in that case (red squares

in the right panel of Figures 2 and 3). For the stochastic volatilities, the FacTVP

model does slightly worse, that is however not very astonishing, because the block of

the sampler that is related to the volatilities is exactly the same in both models, so

there is no shrinkage or dimension reduction involved.

5 Application to the Swiss economy

The Swiss economy turns out to be an interesting laboratory for the use of TVP

models. Switzerland is a small open economy with a strong international currency

and a large financial sector. During the financial crisis, all major central banks

dramatically lowered short term interest rates, so did the Swiss National Bank (SNB).

In August 2009 it narrowed its target band for the 3 month London Interbank Rate

in CHF (3M-Libor) to 0-0.25 percent. It found itself in an unpleasant situation when
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Figure 2: Difference between estimated and effective time variation for bt for
the FacTVP model with NG prior (left panel) and the TVP-VAR (right panel).
Coefficients appear in descending order of simulated time variation.

the outbreak of the European debt crisis in 2010 led to strong appreciation pressure

on the Swiss franc. The export sector accounts for a large fraction of Swiss GDP,

hence changes in the exchange rate especially vis-à-vis the Euro have a direct effect

on the demand of Swiss export goods. Lowering interest rates further to achieve a

sufficient interest rate differential to the euro area to ease appreciation pressures was

not an option by that time. Instead, SNB engaged in ”quantitative easing”, mainly

in the form of foreign exchange acquisition which led to a substantial increase in the

length of SNB’s balance sheet.4 In summer 2011 appreciation pressures accelerated

strongly and the Swiss franc reached almost parity vis-à-vis the Euro. This finally

led to the introduction of a minimum exchange rate of 1.20 Swiss francs against

the Euro on September 6, 2011, which SNB announced to enforce by all available

means. This step was a profound change in the conduct of Swiss monetary policy.

In December 2014 for the first time in its history the SNB introduced negative

short-term interest rates by changing its target band for the 3M-Libor from 0− 0.25

percent to −0.75 − 0.25 percent. A more dramatic move followed on January 15,

2015 when SNB announced that it would discontinue the minimum exchange rate

and lower the target band for its policy rate deeper into negative territory to −1.25 –

−0.25 percent. The sudden discontinuation of the exchange rate floor took market

participants by surprise. In the following, the Swiss franc appreciated strongly versus

4In the second half of 2016 foreign exchange reserves amounted to 100 percent of Switzerland’s
nominal annual GDP.
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Figure 3: Difference between estimated and effective time variation for at for
the FacTVP model (left panel) and the TVP-VAR (right panel). Coefficients
appear in descending order of simulated time variation.
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the Euro.5 It is obvious that a VAR with constant parameters is not suitable to

analyze a period where short term interest rates are stuck at their respective lower

bound. In addition, the presence of an exchange rate floor is another non-linearity

that needs to be accounted for when looking at the Swiss case.

5.1 The impact of an appreciation shock

In the following, I study the effect of a nominal exchange rate shock on the Swiss

economy to understand the changes in the systematic behavior of the endogenous

variables once the central bank is constrained by the lower bound on short term inter-

est rates. For this purpose, I estimate the FacTVP model for monthly data including

the CPI inflation rate, the monthly business cycle index (BCI) for Switzerland, the

spread between the 10 year government bond yield and the 3M-Libor, the index

for the nominal effective exchange rate (NEER), and the 3M-Libor.6 The data set

covers the time period from January 1990 up to February 2018, the sample period is

chosen according to the availability of the data. The data series are standardized

prior to the estimation to avoid scaling issues. To allow for sufficient flexibility in

the time-varying behavior of the parameters I include two factors for the intercepts,

the autoregressive coefficients and covariance states each, i.e. k0 = k = ka = 2. The

computations are based on the NG-prior with factor-specific shrinkage for bt and at

and global shrinkage for the intercepts b0,t. The prior hyperparameters are set to

a1 = a2 = 0.001 for the factor loadings associated with the two factors that govern the

time variation and ac1 = ac2 = 0.01 for the factor loadings capturing the constant part.

The same settings are used for the factor loadings of the covariance states, while for

the time-varying intercepts a0
1 = a0

2 = 0.01. After a burn in phase of 100,000 iterations

the sampler is run for an additional 100,000 iterations out of which every 10th draw

is stored. To check the stability of the system, the Lyapunov exponent is computed

as outlined in Section 2.3 and only draws with a negative Lyapunov exponent are kept.

5For a detailed summary of Swiss monetary history see Baltensperger and Kugler (2017)
6The time series are available from the SNB’s online database (data.snb.ch). A detailed description
of the BCI and how it is computed is provided in Galli (2017)
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Figure 4: Volatility of reduced form errors, median (in black) along with 68%
HPDI (marked in red). The three vertical lines indicate the collapse of Lehman
Brothers in September 2008, the introduction of the exchange rate floor vis-à-vis
the Euro by the SNB in September 2011 and its discontinuation in January
2015.

Figure 4 shows the time-varying volatilities of the reduced form errors. It reveals that

each of them experienced substantial movements throughout the sample period. The

three vertical lines indicate the collapse of Lehman Brothers in September 2008, the

introduction of the exchange rate floor vis-à-vis the Euro by SNB in September 2011

and its discontinuation in January 2015. During the financial crisis the error volatility

in inflation, the BCI and the nominal exchange rate went up, and the reduction of

the interest rates left behind a spike in the volatility of the errors associated with the

3M-Libor. In addition the introduction, as well as the abolishment of the minimum

exchange rate are clearly visible in the volatilities, especially for the NEER and the
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BCI.

The degree of time variation present in the remaining parameters of the VAR is

shown in Figure 5. It reports the estimated standard deviation of the different

parameters over time (median over all posterior draws). Interestingly there is almost

no time variation in the intercepts (left column of the upper panel in Figure 5). The

autoregressive coefficients (marked with B1 and B2) show very little time variation.

Time variation additionally plays a crucial role for the covariance states (A in the

lower panel of Figure 5).

Figure 5: Time variation (median standard deviation over time) of the intercepts
and autoregressive coefficients (upper panel) and of the covariance states (lower
panel).

Figure 6 shows the impulse response of the 3M-Libor to an appreciation shock,

normalized to a 10 point increase of the NEER, at the 4-month horizon. The

exchange rate shock is identified using a simple recursive scheme based on the

Cholesky decomposition of the time-varying covariance matrix of the reduced form

VAR. The NEER is ordered second to last such that it is the only variable along with
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the 3M-Libor (which is ordered last) that can respond to the shock on impact. While

at the beginning of the sample period an appreciation shock triggers a reduction of

the short term interest rate, the effect on the interest rate shrinks along with the

decreasing level of the short-term interest rate and is basically zero during the lower

bound period that started when the SNB lowered its target band for the 3M-Libor to

0-0.25 percent in August 2009 (indicated by the black vertical line). Figure 7 shows

the median impulse responses of inflation, the BCI, the spread and the 3M-Libor

to an appreciation shock for the period before interest rates approached the lower

bound (black line) and lower bound period (red line). An appreciation shock has a

negative effect on the real economy, it lowers the spread and leads to deflationary

pressure (although the uncertainty for the response of inflation is large). Once the

economy is at the lower bound and short-term interest rates cannot be lowered, the

negative effect on the BCI is slightly more persistent and deflationary pressures are

slightly stronger while the depression of the spread is also slightly stronger. Although

the estimated degree of time variation among the model’s parameters turns out to

be muted the model is still able to mimic an economically sensible transformation in

the dynamics of the underlying economy.
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Figure 6: Impulse response of the 3M-Libor to an appreciation shock at the
12-month horizon (left axis) along with the level of the 3M-Libor multiplied by
minus one (dotted line, right axis).
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Figure 7: Impulse responses to an exchange rate shock (appreciation) during
”normal times” (black line) and during lower bound period (red line).

The small amount of time variation present in the autoregressive coefficients raises

the question whether it would be enough to let only the covariance states at and

the volatilities ht be time-varying, while holding bt constant. However, it turns out

that this is not the case. Figure 8 presents the evolution of the 3M-Libor’s median

response to the exchange rate appreciation shock over the estimation period for three

different models. The blue line corresponds to the full model where two factors for

each block are included, i.e. ka = kb = 2. The red line corresponds to the model

where bt are not allowed to change over time (ka = 2, kb = 0) while the yellow line

represents the case where at is fixed (ka = 0, kb = 2).
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Figure 8: Median impulse response of the 3M-Libor to an appreciation shock at
the 12-month horizon for the full model (blue), a model where only At varies
over time (red) and a model where only bt is time-varying (yellow).

It demonstrates impressively that, although barely visible, there is still important

action among the elements of bt. Fixing bt to constant values for the whole sample

period implies that only the impact matrix changes for the impulse responses while

the propagation dynamics remain unchanged. This is clearly not sufficient to capture

the break that occurred in the late 2000s when the short-term interest rate was

lowered to almost zero. The impulse response of the model with time-varying VAR

coefficients (in yellow) is much closer to the corresponding impulse response of the

full model, while the one stemming from the model bt held constant (in red) shows

only a slight change over time. Although the full model and the model where at is

held constant deliver similar results for the median impulse responses, the uncertainty

around these estimates increases substantially when at is fixed (not shown in the

figure for the sake of clarity). This is most likely due to the fact that when at is

fixed the time variation present in the autoregressive coefficients increases quite a

bit compared to the estimates of the full model. The time variation of at is basically

shifted into bt in this case.

5.2 A small forecasting exercise

To test the model’s forecasting ability I perform a small forecasting exercise using

the same variables as outlined above and compare the outcomes to the forecasts

obtained with a traditional TVP-VAR. The forecast horizon is set to one year, i.e

h = 12 because of the monthly frequency of the data. The forecast period starts

in February 2014 which leads to a total of 50 estimation samples where for each

sample one observation is added to the information set at a time. The two models
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are then subsequently re-estimated for each estimation sample and forecasts for all

the endogenous variables are computed. In order to evaluate the accuracy of the

forecasts I compute the average root mean squared forecast errors (ARMSFE) for

each forecasting horizon over the 50 samples. Table 3 reports the relative ARMSFE

of the FacTVP model to the TVP-VAR (a value below 1 means better accuracy

of FacTVP). It turns out that the FacTVP model performs relatively well, the

relative ARMSFE for all variables and all horizons lie below one indicating a better

performance of the FacTVP.

Table 3: ARMSFE of the FacTVP model relative to the traditional TVP-VAR
at different forecast horizons for the five endogenous variables.

Horizon Inflation BCI Spread NEER 3M-Libor

1 0.8199 0.8495 0.8608 0.9510 0.9596

2 0.8097 0.9264 0.8194 0.9764 0.9491

3 0.7960 0.9547 0.8390 0.9222 0.9433

4 0.8322 0.9313 0.8188 0.9110 0.9211

5 0.8351 0.9702 0.7889 0.9385 0.8986

6 0.8303 0.9428 0.7663 0.9468 0.8789

7 0.8571 0.8657 0.7142 0.9525 0.8718

8 0.8868 0.8361 0.7096 0.9448 0.8619

9 0.9001 0.8521 0.7047 0.9512 0.8422

10 0.9276 0.8804 0.6683 0.9770 0.8294

11 0.9198 0.8632 0.6356 0.9766 0.8318

12 0.9234 0.8238 0.6162 0.9886 0.8231

6 Application to historical inflation

Allowing for time-varying parameters becomes especially interesting when working

with data sets that cover a long time span. This section presents some results based

on the estimation of the FacTVP model with data on historical inflation rates for

the United Kingdom (UK), Norway (NOR), Sweden (SWE) and the United States

(US) covering the period from 1830 to 2017 shown in Figure 9. The four series

measure annual year-on-year inflation rates either based on GDP deflators (UK and

US) or consumer prices (NOR and SWE).7 Similar to the previous example I include

7The data for the UK and the US is available from the Bank of England: A millennium of
macroeconomic data. The data for Norway stems from Norges Bank, and the series for Sweden
is available from the Warren E. Weber Historical Data Archives at the Federal Reserve Bank
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two factors for the intercepts, the autoregressive coefficients and the covariance

states each (i.e. k0 = k = ka = 2) to achieve a sufficient level of flexibility.8 The

computations are based on the NG-prior with factor-specific shrinkage for bt and at

and global shrinkage for the intercepts b0,t. The prior hyperparameters are set to

a1 = a2 = 0.001 for the factor loadings associated with the two factors that govern

the time variation in the different parameters and ac1 = ac2 = 0.01 for the factor

loadings capturing the constant part. The same settings are used for the factor

loadings of the covariance states, while for the time-varying intercepts a0
1 = a0

2 = 0.01

is imposed. After a burn in phase of 100,000 iterations the sampler is run for an

additional 100,000 iterations out of which every 10th draw is stored. To check the

stability of the system, the Lyapunov exponent is computed as outlined in Section

2.3 and only draws with a negative Lyapunov exponent are kept when sampling.
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Figure 9: Annual inflation series in percent from 1830 to 2017.

Figure 10 presents the estimated error volatilities for the four countries in the sample.

There is notable movement over time among all of them. The four volatility series

further share certain commonalities such as the spikes around 1850 and around 1920

of Minneapolis. When necessary the series have been linked with actual data from the FRED
database to extend them up to 2017.

8Since the sample only covers inflation series whose properties are expected to be somewhat similar
one could also think of estimating the model with only one factor for each block. In fact that
changes the quality of the results only slightly, it reduces the overall amount of time variation
especially among the off-diagonal elements of B·,t
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in the aftermath of World War I, as well as a strong decline in the volatility of errors

towards the end of the sample period.
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Figure 10: The estimated volatilities of the errors (median in black along with
the 68% HPDI in red).

The degree of time variation for the intercepts and the autoregressive coefficients

is substantially larger than in the previous example for the Swiss economy, and is

especially large for the first own lag of each variable (i.e. the diagonal elements of

B1,t). The evolution of these four coefficients is presented in Figure 12. The size of

the first own lag of each series steadily increases over the first part of the sample,

then this increase comes to a halt and in the last part of the sample the coefficients

start to decrease again. This pattern points towards an overall increase in persistence

present in the inflation rates of the four countries. Indeed, having a look at the sum

of the two included own lags for each series (shown in Figure 13) reveals that the

estimated persistence increased for the UK and Norway and to a much lesser extent

also for Sweden where it stayed at a muted level, while it remained more or less

constant for US inflation. Without time variation in the parameters we would clearly

not be able to capture such interesting features of the data.
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Figure 11: Time variation of the intercepts and autoregressive coefficients (upper
panel) and of the covariance states (lower panel).
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Figure 12: The evolution of the first own lag of each inflation series over time
(median in black along with the 68% HPDI in red).
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Figure 13: The evolution of the sum of own lags of each inflation series over
time (median in black along with the 68% HPDI in red).
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7 Conclusion

In this paper I present a novel approach to estimate a Bayesian TVP-VAR assuming

a factor structure for the time-varying coefficients and covariance states. The factor

structure leads to a strong reduction in the dimension of the model’s state space,

rendering the TVP models suitable for large VARs. In combination with Bayesian

shrinkage priors, the approach also allows for a better distinction between constant

and truly time-varying parameters. Marginal data augmentation is applied to stabilize

the factor’s mean when sampling, and to control the overall amount of time variation

in the parameters. A Monte Carlo study with simulated data illustrates the ability

of the proposed sampler to correctly estimate the degree of time variation and its

superiority to distinguish between constant and truly time-varying parameters when

compared to the traditional TVP-VAR approach.

In an empirical application with monthly data for the Swiss economy the model

is well able to capture structural changes in the economic structure related to the

fact that monetary policy operated at the lower bound of nominal interest rates. It

delivers sensible impulse responses for the case of an appreciation shock. The effect of

the shock on the nominal interest rate strongly diminishes when the economy enters

the lower bound period. A small forecasting exercise based on the same dataset

reveals that the forecasting performance of the FacTVP model turns out to be better

compared to a TVP-VAR without dimension reduction.

A second application with data on historical inflation shows that the role for time

variation in the model parameters gains in importance when the time span of the

sample period increases.

Interesting future steps include extending the dimension reduction to the time varying

volatilities in a similar fashion and applying the model to larger data sets where

the possible gains of the dimension reduction and the role for shrinkage are even

greater.
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A Precision sampler

Stack all observations to obtain the matrix representation

Ỹ = ΛfF + ε, ε ∼ N (0,Σ) (24)

ΦfF = ηf ηf ∼ N (0,Q) (25)

where Ỹ =
(
yf
′

p+1, . . . , y
f ′

T

)′
contains all data, F = (f1−p

′, . . . , fp+1
′, . . . , fT

′)
′

stacks

all unobserved factors, including initial states. The matrices Λf and Φf are respec-

tively of dimension (T − 1)N × (T + p) k and square (T + p)k. Typically, these

matrices are sparse and banded around the main diagonal Chan and Jeliazkov (2009)

Λf =


λ∗f 0 · · · 0

0(T )N×k 0
. . . . . .

...

. . . λ∗f



Φf =


Ik 0 . . .

− Ik Ik 0 . . .
. . .

. . . 0 . . . −Ik Ik

 ,

Σ =


Σ0 0 . . . 0

0 Σ1
...

...
. . .

0 . . . ΣT

 , Q =


Q 0 . . . 0

0 Q
...

...
. . .

0 . . . Q


where Σ0 represents the variance of the initial states of the unobserved factors.

Combining the prior with the likelihood π(Ỹ̃ỸY |F, θ) ∼ N(ΛΛΛfF,Ω) we obtain the

posterior distribution

F̄ |Ỹ̃ỸY , θ ∼ N(µf ,F) (26)

F−1 = F−1
0 + ΛΛΛf ′(Q−1)ΛΛΛf (27)

µf̄ = FΛΛΛf ′(Q−1)Ỹ̃ỸY (28)

In order to avoid the full inversion of F we take the Cholesky decomposition,

F−1 = L′L, then F = L−1L−1′. We obtain a draw F by setting F = µf + L−1ν,

where ν is a (T + 1)k vector of independent draws from the standard normal
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distribution.

B Estimating prior hyperparameters

In contrast to the specification of the innovation variances for the log-volatilities in

the main text, W is assumed to be a full matrix here. The prior distribution is then

set to

W ∼ IW
(
k2
WdfWVW , dfW

)
(29)

where IW stands for the inverted Wishart distribution, and df•, V• denotes the

degrees of freedom and prior scaling matrices respectively. The standard in the

literature for setting the hyperparameters V•, k• is to use a training sample to pin

down the scaling matrices and to set k• to fixed values, similar to those proposed in

Primiceri (2005). An alternative to setting the low-dimensional hyperparameters of

the prior variances for the innovations that govern the time variation of the volatilities

and the covariance states to fixed values, is to estimate them using the procedure of

Amir-Ahmadi et al. (2016). Their approach augments the traditional Gibbs sampler

used for these models with an additional Metropolis step for each hyperparameter

to be estimated. In the context of the present model this results in one additional

step for the scaling factor kW . Conditional on the model structure and assumptions

(3)-(4) stated in Amir-Ahmadi et al. (2016), the acceptance probability of kW is

given by

αiW = min

(
1,

p(W |k∗W )p(k∗W )q(hi−1
W |k∗W )

p(W |ki−1
W )p(ki−1

W )q(h∗W |k
i−1
W )

)
Amir-Ahmadi et al. (2016) set the prior of each of the hyperparameters to be

estimated to an inverse gamma distribution which they parametrize such that the

mode is equal to 0.05 while the variance is chosen to be infinite, which leads to

p(k•) = IG(2, 0.05).

B.1 The scaling factors for the prior variances

Instead of setting the low-dimensional hyperparameters of the prior variances for the

innovations that govern the time variation of the volatilities and the covariance states

to fixed values, as is standard in the literature, they are estimated following the

procedure of Amir-Ahmadi et al. (2016). Their approach augments the traditional
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Gibbs sampler used for these models with an additional Metropolis step for each

hyperparameter to be estimated. In the context of the present model this results

in two additional steps, one for each scaling factor kW , kS. Conditional on the

model structure and assumptions (3)-(4) stated in Amir-Ahmadi et al. (2016), the

acceptance probability of kX , X ∈ {W,S} is given by

αgX = min

(
1,

p(X|k∗X)p(k∗X)q(hg−1
X |k∗X)

p(X|kg−1
X )p(kg−1

X )q(h∗X |k
g−1
X )

)
where g denotes the iteration of the Gibbs-sampler.

1. Get a candidate draw k∗X from N(kg−1
X , σ2

kX
).

2. Compute the acceptance probability αgkX .

3. Accept the candidate draw with probability αgkX .

During the first half of the burn-in phase an additional automatic tuning step for

the proposal variance σ∗kX is used to achieve a target acceptance rate α∗. The target

acceptance rate is set to α∗ = 0.5 as in Amir-Ahmadi et al. (2016).

The posterior sampler presented in Section 3 is then extended by this additional

step.

C Convergence of sampler

C.1 Model for the Swiss economy

Figures 14 to 15 show the Markov chain of the 10,000 draws that are stored for some

selected parameters of the model. All of the chains appear to be stationary and

there is no evidence for jumps or breaks.
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Figure 14: Markov chain for randomly selected elements of the coefficient vector
bt for different time periods.

Figure 15: Markov chain for randomly selected elements of the vector at for
different time periods.

Figure 16: Markov chain for the log-volatilities ht for different time periods.
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C.2 Model with historical inflation data

Figures 14 to 15 show the Markov chain of the 10,000 draws that are stored for some

selected parameters of the model. All of the chains appear to be stationary and

there is no evidence for jumps or breaks.

Figure 17: Markov chain for randomly selected elements of the coefficient vector
bt for different time periods.

Figure 18: Markov chain for the elements of the vector at for different time
periods.
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Figure 19: Markov chain for the log-volatilities ht for different time periods.
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