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Abstract

We contrast the canonical epidemiological SIR model due to Kermack and McK-
endrick (1927) with more tractable alternatives that offer similar degrees of “real-
ism” and flexibility. We provide results connecting the different models which can
be exploited for calibration purposes. We use the expected spread of COVID-19 in
the United States to exemplify our results.
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1 Introduction

Within weeks, the COVID-19 shock and its broad societal repercussions have not only
gripped the personal and professional lives of billions of people but also transformed the
economics profession: Epidemiology has become of general interest for economists. As
a consequence, the profession has started to intensively analyze the interactions between
epidemiological dynamics and economic choices and outcomes. By far the most promi-
nent epidemiological framework underlying this recent wave of work has been the “SIR”
framework in the tradition of the classical article by Kermack and McKendrick (1927).1

As we point out in this paper the Kermack and McKendrick (1927) framework of-
fers advantages and disadvantages when compared with an alternative framework due
to Bailey (1975). For researchers interested in the intersection of epidemiology and eco-
nomics the choice between the two specifications thus is far from obvious. Against this
background, we offer some alternatives.

∗University of Copenhagen. Oster Farimagsgade 5, 1353 Copenhagen K, Denmark. E-mail:
mge@alum.mit.edu
†Study Center Gerzensee; University of Bern; CEPR; CESifo. P.O. Box 21, CH-3115 Gerzensee,

Switzerland. E-mail: dirk.niepelt@szgerzensee.ch. Web: www.niepelt.ch.
1Early papers in the recent literature that merges epidemiology and economics include Atkeson (2020)

and Eichenbaum et al. (2020) but within days, the number of papers has grown substantially, with many
contributions being published in CEPR’s Covid Economics: Vetted and Real-Time Papers series.
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First, we propose a hybrid model that combines key advantages of the Kermack and
McKendrick (1927) and Bailey (1975) specifications. Second, we propose a streamlined
model with fewer state variables that captures many of the essential aspects of SIR models
but offers more tractability and similar degrees of “realism” and flexibility. Finally, we
provide some propositions that help to connect the different models and to exploit the
connections for calibration purposes.

The remainder of the paper is structured as follows. In sections 2 and 3 we present
the SIR models due to Kermack and McKendrick (1927) and Bailey (1975), respectively.
In sections 4 and 5 we propose the hybrid model and the more tractable framework,
respectively. Section 6 concludes. Throughout, we use the expected spread of COVID-19
in the United States to exemplify our results.

2 Canonical SIR Model

The canonical SIR model due to Kermack and McKendrick (1927) specifies laws of motion
in continuous time for the population shares of three groups that differ with respect to
their health status. The three groups are the “susceptible,” the “infected” or “infectives,”
and the “removed,” and their respective population shares at time t ≥ 0 are denoted by
x(t), y(t), and z(t), respectively, where x(t) + y(t) + z(t) = 1.2 We normalize the mass of
the total population at time t = 0 to unity. Accordingly, the population shares x(t), y(t),
and z(t) correspond to the mass of susceptible, infected, and removed persons.

At time t = 0 the population consists of x(0) susceptible persons and a few infected
persons, y(0). There are no removed persons at this time, z(0) = 0. In each instant after
time t = 0, infected persons transmit the disease to members of the susceptible group and
a share of the infected either dies or recovers and develops immunity. Formally,

ẋ(t) = −b(t)x(t)y(t), (1)

ẏ(t) = −ẋ(t)− (cd + cr)y(t), (2)

ż(t) = (cd + cr)y(t). (3)

Here, b(t) denotes a possibly time-varying infection rate. It reflects epidemiological fac-
tors and, in economic analyses, typically also household, firm, or government choices.
The extent to which susceptible persons are infected depends on their number, x(t); the
infection rate, b(t); and the population share of infected persons. The number of in-
fected persons increases one-to-one with the susceptible persons that get infected, while
a share c ≡ cd + cr of the infected population dies or recovers; the coefficients cd and cr

parameterize the flow into death and recovery, respectively.
Consider the case where b(t) is constant at value b. Inspection of equations (1) and

(2) reveals that for bx(0) > c the share of infected persons increases until it reaches a
maximum when x(t) = c/b; thereafter, the share declines. Intuitively, when x(0) falls
short of c/b (the “herd immunity level”) then there are fewer new infections of susceptible
persons than outflows from the infected pool due to recoveries and death.

We state a well-known epidemiological result (e.g., Theorem 2.1 in Hethcote, 2000):

2We follow the notation introduced by Kermack and McKendrick (1927).
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Proposition 1. In the canonical SIR model with b(t) = b > c/x(0),

x(t) + y(t) = x(0) + y(0) +
c

b
ln

(
x(t)

x(0)

)
.

Accordingly, the maximum value of y(t) equals

x(0) + y(0)− c

b
+
c

b
ln

(
c/b

x(0)

)
,

and the long-run share of the susceptible population, x(∞), solves the equation

x(∞) = x(0) + y(0) +
c

b
ln

(
x(∞)

x(0)

)
.

Proof. Dividing equation (2) by equation (1) yields

ẏ(t)

ẋ(t)
= −1 +

c

b

1

x(t)
⇒ ẏ(t) = −ẋ(t) +

c

b

ẋ(t)

x(t)
.

Integrating yields y(t) = −x(t)+ln(x(t))c/b+constant. Since x(0) and y(0) are given the
constant equals x(0) + y(0) − ln(x(0))c/b and the first result follows. The second result
follows from the fact that y(t) reaches a maximum when x(t) = c/b (see above). The last
result follows since y(∞) = 0.

Note than x(∞) falls short of the herd immunity level, c/b, unless x(0) = c/b = x(∞)
and y(0) = 0.3

Calibration and Simulation We measure time in days and use the spread of COVID-
19 in the United States as an example for our analysis. We associate time t = 0 with
mid March 2020, the date around which public health authorities considered to impose
restrictions. We assume that at this time, z(0) equalled practically nil.

Following Atkeson (2020) and the sources cited therein we assume that the flow rate
from the infected to the removed population equals c = 1/18, corresponding to an expo-
nentially distributed infection duration that averages 18 days.4

From Russell et al. (2020), Greenstone and Nigam (2020), and the sources cited therein
we infer that the inverse of the infection fatality rate, c/cd, lies in the range [100, 200].

To calibrate y(0) we use data on COVID-19 deaths in mid March 2020 as well as
information about cd and c. The number of deaths on March 16 equalled 23.5 Based on
equation (3) we infer that the initial share of the infected population in mid March, y(0),

3Note also, from equation (2), that at the beginning of an epidemic with x(t) ≈ 1 and z(t) ≈ 0, b

approximately equals the growth rate of the number of persons who are or were infected, ẏ(t)+ż(t)
y(t)+z(t) =

b x(t)y(t)
y(t)+z(t) ≈ b.

4Note that
∫∞
0
ce−ctt dt = 1/c.

5See https://github.com/nytimes/covid-19-data/blob/master/us.csv. Regressing the full set
of March data on an exponential trend generates a similar point estimate for March 16.
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equalled 1.8933 · 10−4.6 This compares to a reported case count of 4507, corresponding to
1.3745 · 10−5 percent of the US population.7

Finally, to calibrate b we rely on information in Ferguson et al. (2020), Greenstone
and Nigam (2020), and Scherbina (2020). These authors argue, or infer from estimates,
that the “basic reproduction number” R0 = b/c for COVID-19 equals approximately
2.4 which implies b = 0.1333; that in the absence of any intervention the number of
infected persons would have peaked in early June or in July; and that the share of the
susceptible population would have fallen by roughly 80 percent until October 2020. Given
our calibrated values for y(0) and c we compute the paths of x(t) and y(t) for b values
around 0.1333 and check when the predicted y(t) series peaks and to what level x(t) falls
by early October. Table 1 summarizes the results:

b y(t) maximum x(1 October)

0.1000 13 Sept 2020 0.2675
0.1333 07 July 2020 0.1215
0.1500 20 June 2020 0.0844
0.2000 21 May 2020 0.0305

Table 1: Implications of different values for b in the canonical SIR model.

The table shows that, not surprisingly, larger values of b imply a faster transition
with an earlier peak of infections. In light of the different forecasts by specialists (quoted
above) we choose the baseline value b = 0.1333. Figure 1 illustrates the dynamics given
these parameter assumptions. Note that in line with the theoretical results discussed
before, y(t) reaches its maximum value of ≈ 0.2185 when x(t) = c/b ≈ 0.4168.

3 Modified SIR Model

One noteworthy feature of the canonical SIR model concerns scale effects in the posited
process for infections: Equation (1) implies that a doubling of the population shares x(t)
and y(t) leads to a quadrupling of new infections, −ẋ(t), although each susceptible person
faces just twice as many infected persons as before. This contradicts the fact that infection
rates are largely independent of population size:

6We have y(0) · (US population) = (new deaths)/cd = (new deaths)/c · c/cd. We use US population =
328 million, new deaths = 23, and c/cd = 150.

7See https://github.com/nytimes/covid-19-data/blob/master/us.csv. The reported num-
ber corresponds to the cumulative case count but there are very few removed cases at the time.
Common estimates of the extent of underreporting suggest a factor of ten, in line with our results;
see, e.g., https://www.medrxiv.org/content/10.1101/2020.03.14.20036178v2.full.pdf+html or
https://fondazionecerm.it/wp-content/uploads/2020/03/Using-a-delay-adjusted-case-fatality-

ratio-to-estimate-under-reporting-_-CMMID-Repository.pdf.
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Figure 1: Dynamics in the canonical SIR model: x(t) (dotted), y(t) (solid), and z(t)
(dashed).

“Naively, it might seem plausible that the population density and hence the
contact rate would increase with population size, but the daily contact patterns
of people are often similar in large and small communities, cities, and regions.
For human diseases the contact rate seems to be only very weakly dependent
on the population size. . . . This result is consistent with the concept that
people are infected through their daily encounters and the patterns of daily
encounters are largely independent of community size within a given country”
(Hethcote, 2000, p. 602).

By implication, analyses based on the canonical SIR model could over estimate the
effects of policy interventions that are assumed to affect both x(t) and y(t), as we discussed
in Gonzalez-Eiras and Niepelt (2020a,b).8

A second potential problem with the canonical SIR model relates to its limited tractabil-
ity.9 While numerical solutions of the model are easy to compute they lack the trans-
parency of closed-form solutions which are more helpful to build intuition, in particular
at this stage of the literature on epidemiology and economics and even more so when
economic choices are embedded in the epidemiological framework.

A modified SIR model due to Bailey (1975) resolves these issues. It only differs from
the canonical SIR with respect to equation (1). In particular, Bailey’s (1975)specification
of the infection process scales the product of x(t) and y(t) in equation (1) by the total

8Alvarez et al. (2020) adopt the specification (1)—in their setup a lockdown that reduces the number
of susceptible and infected persons by a factor of α each reduces transmission risk per susceptible person
by a factor of α2—but they discuss the assumption and indicate some doubt (p. 8). In more recent work,
Acemoglu et al. (2020) also discuss the implications of equation (1).

9See Harko et al. (2014) for a strategy to solve the canonical model.
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number of infected or susceptible persons; that is, equation (1) is modified to read

ẋ(t) = −b(t)x(t)
y(t)

x(t) + y(t)
, (4)

where the expression in the denominator replaces x(t) + y(t) + z(t), which equals unity.
With this specification, the extent to which susceptible persons are infected depends on
their number, x(t); the infection rate, b(t); and the share of the infected in the susceptible
or infected population. Accordingly, a doubling of the population shares x(t) and y(t)
leads to a doubling of new infections, not a quadrupling. We refer to equations (2)–(4)
as the modified SIR model.

The system (2)–(4) can be solved as follows (Bohner et al., 2019): Let ξ(t) ≡ x(t)/y(t)
for y(t) 6= 0. We have

ξ̇(t) =
ẋ(t)y(t)− x(t)ẏ(t)

y2(t)
= (c− b(t))ξ(t),

such that
ξ(t) = ξ(0)e

∫ t
0 (c−b(s))ds ⇔ y(t) = x(t)κe

∫ t
0 (b(s)−c)ds

where κ ≡ y(0)/x(0). Substituting into equation (4) yields

ẋ(t) = −b(t)x(t)
κe

∫ t
0 (b(s)−c)ds

1 + κe
∫ t
0 (b(s)−c)ds

,

which has the solution

x(t) = x(0)e

∫ t
0

−κb(u)

κ+e

∫u
0 (c−b(s))ds du. (5)

Accordingly, we can solve equation (2) for

y(t) = y(0)e

∫ t
0

b(u)

1+κe

∫u
0 (b(s)−c)ds−c du

(6)

and equation (3) for

z(t) = 1− x(t)
(

1 + κe
∫ t
0 (b(s)−c)ds

)
s.t. (5), (7)

where we use the fact that the population size equals unity.
The solution simplifies when b(t) is constant at value b. In this case equations (5)–(7)

reduce to

x(t) = x(0)(1 + κ)
b
b−c
(
1 + κe(b−c)t)− b

b−c , (8)

y(t) = y(0)(1 + κ)
b
b−c
(
1 + κe(b−c)t)− b

b−c e(b−c)t, (9)

z(t) = 1− x(0)(1 + κ)
b
b−c
(
1 + κe(b−c)t)− c

b−c . (10)

Moreover, we have the following result:
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Proposition 2. Consider the modified SIR model and let b(t) = b > c. Then, y(t) attains
the maximum value

ymax = y(tmax) =
b− c
c

(
b

c

x(0)

x(0) + y(0)

)− b
b−c

x(0)

at the time

tmax = ln

(
b− c
c

x(0)

y(0)

)
/(b− c).

Proof. From equations (2) and (4), ẏ(t) = 0 implies (x(t) + y(t))/x(t) = b/c. Using
equations (8) and (9) this implies

1 +
y(0)

x(0)
e(b−c)t =

b

c
.

The result for tmax then follows. Substituting into equation (9) yields the result for
ymax.

Calibration and Simulation The modified SIR model does not require a new cali-
bration. Figure 2 illustrates the dynamics in the modified SIR model (in red) under the
same assumptions about parameter values as before. The blue schedules representing the
dynamics in the canonical SIR model are identical to the blue schedules in figure (1). We
note that during the early phase of the epidemic the predicted dynamics in the two SIR
models are very similar. In fact, given the uncertainty surrounding the epidemiological
parameters, the two predictions effectively are indistinguishable. When the difference b−c
is increased the similarities become even stronger.

Similarly, infections (represented by the variable y(t)), which determine the stress in
the health care system and thus constitute a key variable from a policy maker’s perspec-
tive, peak at nearly the same time in both models, although at different levels. The two
models therefore make the same prediction as to when hospital capacities are in highest
demand.

But there is also a significant difference between the two model predictions, which
concerns the long-run behavior of x(t) (and thus, also z(t)). In the canonical model,
x(∞) is strictly positive (albeit small given our calibration), as discussed above, while in
the modified SIR model x(t) converges to zero. The two models therefore have different
implications for optimal policy when the government’s objective (strongly) depends on
the population shares x(t) and z(t) in the long run, as seems plausible to expect.

Using proposition 2 we can easily determine the exact date at which infections peak as
well as the peak infection level: We find that tmax corresponds to 7 July and ymax ≈ 0.3121.
Alternatively, one may combine information about the likely peak of an infection with
proposition 2 to calibrate the model.

4 Hybrid SIR Model

We have seen that the canonical and the modified SIR model yield similar predictions for
the time profile of infections. At the same time they differ with respect to the implications
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Figure 2: Dynamics in the canonical (blue) and modified (red) SIR models: x(t) (dotted),
y(t) (solid), and z(t) (dashed).

for the long-run share of susceptible persons, the returns to scale in infections, and their
tractability.

Using a simple device, we can form a hybrid model that combines the main advantages
of the two frameworks. To this end we rely on the formal structure of the modified SIR
model but assume that in addition to the susceptible, infected, and removed groups, there
exists a group of “lucky” persons with population share x̄. There are no flows into or out
of the lucky group and the dynamics of x(t), y(t), and z(t) follow the same laws of motion
as in the modified SIR model. At the same time, the assumption that x̄ > 0 implies that
in the long run, not everyone will eventually have been infected at some point, in line
with the canonical model.

The group of susceptible or lucky persons in the hybrid model thus should be in-
terpreted as the counterpart of the susceptible group in the canonical model. The only
remaining drawback of the hybrid model is that, unlike in the canonical model where
x(∞) is endogenous, the long-run population share of the group of susceptible or lucky
persons in the hybrid model is exogenous (equal to x̄).

Summarizing, the hybrid model contains four groups: x̄, x(t), y(t), and z(t). The
laws of motion for x(t), y(t), and z(t) are identical to those in the modified SIR model
(equations (2)–(4)) and x̄ is constant over time. Moreover, conditional on y(0), the
remaining initial condition is given by x(0) = 1− x̄− y(0).

Calibration and Simulation The hybrid SIR does not require a new calibration. We
let x̄ = 0.1215, corresponding to x(∞) in the canonical SIR model (see proposition 1).
Figure 3 illustrates the dynamics in the hybrid SIR model (in black) under the same
assumptions about parameter values as before. The blue and red schedules representing
the dynamics in the canonical and modified SIR models, respectively, are identical to the
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Figure 3: Dynamics in the canonical (blue), modified (red), and hybrid (black) SIR
models: x(t) (dotted, including x̄), y(t) (solid), and z(t) (dashed).

blue and red schedules in figures (1) and (2).
During the early phase of the epidemic the predicted dynamics in the three models

are very similar. Using proposition 2 we find that peak infections in the hybrid model
occur at tmax corresponding to 5 July, two days earlier than in the modified SIR model,
and ymax ≈ 0.2742. In the long run the dynamics of the hybrid model resemble those in
the canonical model, as desired.

5 Logistic Model

Theoretical research projects typically embed optimizing behavior on the part of eco-
nomic agents or the government into frameworks that build on the SIR model. This
further reduces tractability, even in the modified or hybrid SIR model. As a consequence,
(dynamic) optimal policy problems embedded in the dynamic system (2)–(4) generally do
not give rise to closed form solutions and researchers have to resort to less transparent,
numerical approximations of the model solutions.

Against this background, we propose a simplified epidemiological framework—the lo-
gistic model—that represents health dynamics in terms of a single rather than two state
variables.10 This can significantly improve tractability while at the same time impos-
ing only moderate cost in terms of reduced “realism” or flexibility (see Gonzalez-Eiras
and Niepelt (2020a,b) for an application). An added benefit is that the modified setup
constitutes a special case of the SIR models discussed previously.

To obtain the logistic model we simplify the SIR models along two dimensions. First,

10The SIR models discussed so far feature two state variables, x(t) and y(t); z(t) is implied by the
former two.
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we neglect deaths and let cd = 0. Importantly, this does not mean that we disregard the
societal cost of deaths, to the contrary. Representing this cost does not require that we
explicitly account for the deceased population; it suffices to account for infections and
to associate a cost with these infections that reflects the societal cost of the number of
deaths that follow from the infections. That is, rather than modeling a time series for the
number of deceased as in the SIR models, the simplified setup can capture the costs due
to death by a function of the flows into infection, ẋ(t) or ẏ(t).11

Second, we blur the distinction between infected and recovered persons by letting
cr = 0 such that infection is an absorbing state and z(t) = 0. That is, we assume for
example that infected persons are as productive as recovered ones.12 Again, this does
not imply that we disregard the societal cost that infected persons impose on the health
care system. Rather than relating this cost to a time series for the number of currently
infected (soon to die or to be removed) persons, as in the SIR models, the simplified setup
relates this cost to flows from the x(t) to the y(t) pool.

In sum, we view x(t) as the “not yet infected” population and y(t) = 1 − x(t) as
the “infected but still productive.” By letting c = 0 the simplified setup with constant
coefficient b reduces the canonical or modified SIR model to a framework where the time
paths of x(t) and y(t) follow logistic curves. To see this, note from equations (8) or (9)
that c = 0 (such that x(t) + y(t) = 1) and b(t) = b implies

y(t) = y(0)(1 + κ)
ebt

1 + κebt
=
y(0)

x(0)

1

e−bt + y(0)/x(0)
=

1

1 + e−btx(0)/y(0)
.

In parallel to the approach taken for the hybrid model we can easily impose that the
long-run share of susceptible persons is bounded away from zero, limt→∞ x(t) ≡ x̄ > 0, or
equivalently that limt→∞ y(t) ≡ ȳ < 1. Specifically, writing the law of motion for y(t) as

ẏ(t) = by(t)(ȳ − y(t))

such that y(t) converges to ȳ implies the solution

y(t) =
ȳ

1 + e−bȳt(ȳ/y(0)− 1)
.

Accordingly, we have the following standard result:

Proposition 3. Consider the logistic model with b(t) = b and y(0) < ȳ ≤ 1. Then, ẏ(t)
reaches a maximum at

t = ln

(
ȳ − y(0)

y(0)

)
/(bȳ).

Proof. Solving ÿ(t) = 0 (or y(t) = ȳ − y(t)) for t yields the result.
11It is also easily possible to represent a situation where only the total number of deceased persons is

of interest: In the SIR model the cost of the total number of deaths is some function of the number of
deaths, which appears as a variable in the model and is proportional to 1− x(inf); in the logistic model
the cost is a function of the number of deaths which does not appear as a variable in the model but is
related to the total number of ever infected persons, ȳ, which does appear as a variable in the model (see
below).

12This assumption is particularly realistic when many infected persons do not know of their health
status, as appears to be the case with COVID-19.
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Figure 4: Dynamics in the canonical (blue) and hybrid (black) SIR models and in the logis-
tic model (green). SIR models: x(t) (dotted, including x̄), y(t) (solid), and z(t) (dashed).
Logistic model: x(t) (dotted, including x̄), ẏ(t) (solid, scaled), and y(t) (dashed).

Calibration and Simulation We can use propositions 2 and 3 to calibrate the logistic
model in order to match peak infection rates (or peak health care burdens) as implied by
SIR models. To see this, recall that the peak infection rate in the modified or hybrid SIR
model occurs at time

tmax = ln

(
b− c
c

x(0)

y(0)

)
/(b− c).

It follows that the b value in the logistic model, blog say, that replicates peak infections in
the modified or hybrid SIR models with parameter b is given by

t = tmax ⇔ blog =
(b− c) ln

(
ȳ

y(0)
− 1
)

ȳ ln
(

b−c
c

x(0)
y(0)

) ,

where the x(0) value refers to the hybrid SIR model (excluding “lucky” persons). Using
our common parameter values c = 1/18, y(0) = 1.8933 · 10−4, and x̄ = 0.1215 = 1 − ȳ,
this yields blog = 0.0851 (for b = 0.1333).

Figure 4 illustrates the dynamics in the logistic model (in green). The blue and black
schedules representing the dynamics in the canonical and hybrid SIR models, respectively,
are identical to the schedules in figures (1) and (3). (To improve legibility the figure does
not show the paths in the modified SIR model.) Evidently, the time paths for x(t), y(t),
and ẏ(t) (scaled) match the corresponding paths in the canonical and hybrid SIR models
very closely.

We interpret this as evidence for the usefulness of the approach suggested in this paper.
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6 Conclusion

Researchers interested in the intersection of epidemiology and economics might usefully
build on variants of the classical SIR models in the tradition of Kermack and McKendrick
(1927) and Bailey (1975). In this paper, we discuss two such variants, a hybrid SIR
model and the logistic model. We provide some propositions that help to connect the
different models and to exploit the connections for calibration purposes, and we exemplify
their usefulness against the background of the ongoing COVID-19 epidemic in the United
States. Without doubt, future research will continue to build on these models.
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