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Abstract

We propose a flexible model of infectious dynamics with a single endogenous
state variable and economic choices. We characterize equilibrium, optimal out-
comes, static and dynamic externalities, and prove the following: (i) A lockdown
generically is followed by policies to stimulate activity. (ii) Re-infection risk lowers
the activity level chosen by the government early on and, for small static externali-
ties, implies too cautious equilibrium steady-state activity. (iii) When a cure arrives
deterministically, optimal policy is dis-continous, featuring a light/strict lockdown
when the arrival date exceeds/falls short of a specific value. Calibrated to the ongo-
ing COVID-19 pandemic the baseline model and a battery of robustness checks and
extensions imply (iv) lockdowns for 3–4 months, with activity reductions by 25–40
percent, and (v) substantial welfare gains from optimal policy unless the government
lacks instruments to stimulate activity after a lockdown.
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1 Introduction

An epidemic generates trade-offs. Since economic activity involves personal interaction,
higher activity accelerates infectious dynamics, with detrimental effects on public health,
mortality, and future well-being. The trade-offs are particularly stark at the outset as
the ongoing COVID-19 drama has shown.1 Since it took time in many countries to
adopt efficient and targeted strategies to contain the infections, governments relied on
non-targeted forced reductions in economic activity—lockdowns—as a first response.

In this paper, we propose a generic framework to analyze optimal lockdown policies
and we derive a series of results that seem to have gone mostly unnoticed in the recently
burgeoning literature focusing on the intersection of epidemiology and economics.2 Almost
all models in that recent literature build on the classical epidemiological “SIR”-model
developed by Kermack and McKendrick (1927). But this model is just one among several
“compartmental” epidemiological workhorse models, and certainly not the most relevant
one when re-infection risk or other factors are of primary concern.3 In addition, SIR-
models of various flavours feature two endogenous epidemiological state variables; this
makes it difficult to embed economic choices in those frameworks without sacrificing
analytical tractability, transparency, and generality.

The generic epidemiological framework at the basis of our economic analysis generalizes
the “simple epidemiological model” (Bailey, 1975) and captures the essence of infectious
dynamics, which mainly depend on the population shares of two groups, those that have
contracted the disease and those that have not yet but are susceptible. New infections are
driven by complementarities between the two groups, and cumulative infections therefore
approximately follow a logistic law of motion. We show that a framework with a single
endogenous state variable, the share of the population that has contracted the disease at
some time in the past, constitutes a tractable and accurate approximation of infectious
dynamics in models with additional state variables. Moreover, it offers a flexible environ-
ment to analyze how economic choices and epidemiological dynamics interact and how
optimal policy shapes them.

The economic layer that we superimpose on the epidemiological framework incorpo-
rates households and a government. We assume that households derive utility from their
choices of economic activity, both positive because activity generates consumption and
negative because it requires effort. In addition, higher activity increases the risk of getting
infected which is privately costly due to mortality risk or health care expenses. House-
holds are fully aware of the aggregate infection dynamics and the risks they face and they
behave individually rationally.4

1The fact that some countries do better than others in terms of both economic and public health out-
comes does not invalidate the presence of trade-offs but indicates differences in the quality of government
responses.

2Early papers in that recent literature include Atkeson (2020) and Eichenbaum et al. (2020). Within a
couple of weeks many papers by other authors have followed, see for instance CEPR’s Covid Economics:
Vetted and Real-Time Papers series.

3Hethcote (1989; 2000) reviews workhorse epidemiological models.
4Goolsbee and Syverson (2020) document voluntary behavioral changes in the U.S. before states

introduced lockdown measures.
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Nevertheless, the privately optimal activity choices fail to fully internalize the social
consequences, and this gives rise to “static” and “dynamic” externalities. The static
externality reflects differences between the immediate private and social marginal costs of
activity. Such differences may arise for two reasons: First, because households only bear a
part of the direct marginal costs of infection, for example due to public health insurance;
and second, because they perceive their actions to have a linear effect on health outcomes
while symmetric activity choices in equilibrium may give rise to nonlinearities and stronger
complementarities. The dynamic externality arises because households do not internalize
the consequences of their choices for the aggregate state variable.

While the private sector always ends up shouldering the full social costs of infection the
static and dynamic externalities imply that the private activity choices are distorted. In
equilibrium, activity evolves inversely with the flow of new infections as households trade
off the economic net benefits and the immediate private health costs. At the outset of
an epidemic, households therefore take only minor precautions while they reduce activity
much more drastically when infections peak.

In contrast, the activity level implemented by a benevolent social planner reflects the
full immediate social costs as well as the dynamic welfare consequences of higher infection
numbers. In most, but not all, parts of the analysis we assume that the government has
sufficient instruments at its disposal to implement the social planner outcome. When it
does, the government imposes a lockdown in the early phase of the epidemic and curtails
activity below the privately optimal level. This slows down infection dynamics and shifts
peak infections into the future.

That infection dynamics give rise to externalities and call for corrective government
action is well understood (Gersovitz and Hammer, 2004). More surprisingly, we find that
this corrective action can go both ways. One of our results characterizes the optimal timing
not only of lockdowns but also of “inverse lockdowns,” namely interventions that aim at
stimulating private sector activity. Arguably, some measures resembling such inverse
lockdowns have been imposed or promoted in the context of the COVID-19 pandemic,
for instance in the form of monetary easing, temporary sales tax reductions, employment
subsidies, or “return-to-work bonuses.”5

We find that inverse lockdowns are imposed even if individual households fail to fully
internalize the immediate social costs of activity, that is, even when the static externality is
negative. Intuitively, as the infection spreads, the dynamic externality eventually becomes
positive and as long as the static externality remains limited in size the total externality
turns positive as well. At a later stage of the epidemic the optimal government intervention
therefore amounts to stimulating activity.

Underlying the dynamic externality and the fact that it eventually becomes positive are
capital losses and gains. Early in the epidemic, the value function of society is decreasing
in the aggregate state, i.e., the stock of previously infected households. Intuitively, peak
infection rates and the associated costs of infection and of reduced economic activity are
approaching and this pushes the present value of future suffering up. But after a point,

5In the U.S. the director of the White House National Economic Council urged lawmakers in June
2020 to replace a USD 600-a-week lump-sum transfer with a “return-to-work bonus” (The Wall Street
Journal, June 15, 2020).
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the slope of the value function turns positive because higher cumulative infection numbers
imply fewer future infections to suffer from, and the advent of a return to normality. This
positive implication of infection flows is not internalized by the private sector and provides
the rationale for the government to stimulate activity.

When infection and subsequent recovery does not confer permanent immunity the
calculus of optimal government intervention changes.6 We model this scenario under the
assumption that a share of the population that contracted the disease in the past becomes
susceptible again, opening the path for recurrent infections. With such re-infection risk,
the economy converges to a—policy dependent—steady state with strictly positive rather
than zero infection flows; that is, the disease becomes endemic. As a consequence, not
only the infection dynamics are generically inefficient if the government does not intervene,
but the steady state is as well.

We prove that, absent a static externality, the government’s choice of activity level
necessarily exceeds the activity level in equilibrium. When the static externality is suffi-
ciently large or society cares little about the future, in contrast, the opposite result holds
true. Independently of these steady-state properties the government’s activity level early
on in an epidemic, when a lockdown is in place, decreases with re-infection risk.

Another key result of our analysis concerns the optimal policy when a cure like a
vaccine or effective treatment is anticipated to arrive deterministically such that time
constitutes another state variable. Such a scenario might reflect, for example, that several
vaccine candidates, of which at least one will work with near certainty, undergo final trials
or require final regulatory approval (as is the case in Fall 2020 in the context of COVID-
19), or that a poor country waits for supplies of vaccine doses that are provided by donor
institutions.

We prove that in this kind of situation the exact date at which the cure becomes
available is critical in the sense that the strictness of an optimal lockdown is dis-continuous.
When the arrival date exceeds a specific value then the lockdown is very light or the
government even imposes an inverse lockdown. But when the arrival date falls short of
the value, even just, then the optimal lockdown is very strict. Intuitively, as the arrival
date increases, the optimal policy first calls for lower and lower activity in order to keep
total infections in check until the cure arrives. Eventually, the costs of curtailing activity
by more and more, for longer and longer become prohibitive and it is optimal to “give
up” on infections.

Our framework with a single endogenous state variable can easily be solved and simu-
lated numerically. Calibrated to match COVID-19 infection data in the U.S. the model’s
baseline version suggests that starting from mid March 2020 a lockdown should optimally
have lasted for three months with economic activity reduced by twenty five percent. Com-
pared with laissez faire the optimal policy would have increased welfare on the order of
six percent of lifetime consumption. Moreover, exploiting the model’s tractability and
flexibility we run a battery of robustness checks. We change key parameter values (for
instance, the intertemporal elasticity of substitution); allow for constant or increasing
returns of activity on infections; and analyze different specifications of the cost function

6In the context of the COVID-19 pandemic scientists currently cannot rule out that individuals with
antibodies may re-contract the disease. See, for example, Gudbjartsson et al. (2020) and To et al. (2020).
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associated with infections—allowing for congestion effects and “flattening-the-curve” mo-
tives as well as learning effects. We allow for virus mutations, enhancements in therapy
or test-and-trace technology, or multiple infection waves by introducing stochastic change
of epidemiological parameters. And we study the effects of restricting the government’s
instruments such that inverse lockdowns become infeasible.

Across almost all of these alternative specifications, as well as the extensions discussed
previously, the basic message remains one of optimal lockdowns for three to four months,
with activity reductions by twenty five to forty percent. Only when activity enters the
law of motion quadratically or in the presence of re-infection risk does the optimal lock-
down extend over a much longer period, around six to seven months. Only when the
intertemporal elasticity of substitution equals one half rather than unity is the reduction
of activity during the lockdown much smaller, roughly twelve percent; and only with re-
infection risk is it much larger, close to fifty percent. The welfare gains from the optimal
government intervention are on the order of three to nine percent of lifetime consumption.
Only when the government can impose a lockdown but lacks instruments to subsequently
stimulate activity are the welfare gains nonsignificant.

Through most of the paper we assume that infection status is unobserved and as a
consequence, that all households choose the same activity level. While this is a plausible
approximation in the context of some epidemics, including the COVID-19 pandemic, it
is less so for others. In a final extension we therefore consider the consequences of either
publicly or privately observed infection status. We find that when ten percent of infected
households become aware of their status this has only minor effects on the strictness of
the optimal lockdown and the associated welfare effects, increasing the optimal lockdown
duration by two weeks.

Related Literature Workhorse epidemiological models due to Kermack and McK-
endrick (1927) and Bailey (1975) are reviewed, e.g., in Hethcote (1989) and Hethcote
(2000). To derive our generic epidemiological framework and to calibrate the model we
rely on this literature; the mapping between different frameworks laid out in Gonzalez-
Eiras and Niepelt (2020b); as well as on Atkeson (2020), Ferguson et al. (2020), Greenstone
and Nigam (2020), Hall et al. (2020), and Russell et al. (2020).

Since mid March 2020 there has been an explosion of papers focusing on the intersec-
tion of epidemiological dynamics and economic cost-benefit analysis. Early contributions
include Atkeson (2020) and Eichenbaum et al. (2020). Alvarez et al. (2020) compute
the optimal lockdown policy when there is a rationale to flatten the infection curve in
order to relax health care system capacity constraints. Farboodi et al. (2020) argue that
in equilibrium and under the optimal policy the effective reproduction number always
remains close to unity. Gersovitz and Hammer (2004), Bethune and Korinek (2020) and
Jones et al. (2020) assess externalities. Kaplan et al. (2020), Acemoglu et al. (2020), and
Ellison (2020) analyze the implications of heterogeneity, including differential costs of re-
duced activity, asymmetric infection dynamics due to “super spreaders,” age-dependent
fatality rates, or welfare losses due to nontargeted measures. Çenesiz and Guimaraẽs
(2020) and Giannitsarou et al. (2020) analyze immunity loss and demographic dynamics.
Taking spatial aspects into account Bisin and Moro (2020) show how local interactions
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give rise to matching frictions and local herd immunity effects.
Most of this work focuses almost exclusively on numerical analyses, with Toxvaerd

(2020), Gonzalez-Eiras and Niepelt (2020a), Abel and Panageas (2020), and Miclo et al.
(2020) constituting some notable exceptions.7 Our paper combines analytical results
with numerical simulations. Because the model captures the essence of epidemiological
dynamics and economic responses to it, our analytical results on capital gains, inverse
lockdowns, steady-state inefficiencies, and dis-continous policy functions should apply
much more broadly.8 In fact, in parallel work by Garibaldi et al. (2020) who study a
discrete-time setup with multiple states a dynamic externality similar to the one in our
model is present; we highlight that such dynamic externalities necessarily start negative
and eventually become positive. Moreover, our paper presents a battery of extensions
and robustness checks and contrasts various epidemiological and economic environments:
Laissez faire vs. optimal policy; observable vs. unobservable infection status; lockdowns
vs. forced openings; stochastic vs. deterministic arrival of a cure; permanent vs. tempo-
rary immunity, generating either a disease-free steady state or an endemic equilibrium;
or, stationary epidemiological environments vs. environments with changing characteris-
tics. Our simulations offer insights into how these different features, some of which have
individually been studied before, affect the optimal policy.

Outline The remainder of the paper is organized as follows. We lay out the model in
section 2 and present the conditions characterizing equilibrium and first best in section 3.
The analysis of the baseline model is contained in section 4. Sections 5–8 consider various
modifications and extensions. In particular, section 5 offers a host of robustness checks.
We consider alternative specifications of the law of motion, the costs of infection, or of
parameter values as well as stochastic change in the infection rate, a stochastic arrival of
a new type of disease, or restrictions on government instruments. Section 6 analyzes the
consequences of lack of immunity. Section 7 derives the implications of a deterministic
rather than stochastic arrival of a cure. Section 8 considers the implications of observable
infection status and thus heterogeneity. Section 9 concludes. Appendix A discusses the
calibration against the background of a comparison of epidemiological models. All proofs
are relegated to appendix B.

2 The Model

We consider an infinite horizon economy with households and a government. Time is
continuous and indexed by t ≥ 0.

7Toxvaerd (2020) characterizes privately optimal social distancing; Gonzalez-Eiras and Niepelt (2020a)
characterize optimal lockdown policies; and Abel and Panageas (2020) characterize the optimal steady
state in a SIR model with vital dynamics. Miclo et al. (2020) derive the optimal policy under a capacity
constraint.

8Farboodi et al. (2020) briefly consider the case with a deterministic vaccine arrival but they do not
find our result that optimal policy may be dis-continuous.
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2.1 Epidemiology

We adopt an epidemiological framework that is closely related to several canonical models
in the epidemiological literature: The SIR model due to Kermack and McKendrick (1927),
a modified SIR model and the simple epidemic model, the SI model, due to Bailey (1975),
and the SIS model derived from it.9 Our framework incorporates one endogenous state
variable (rather than the two in the typical SIR model), possibly time as a second state
variable (unlike SIR and SIS models), as well as economic activity (unlike SIR and SIS
models).

2.1.1 Dynamics

At time t the population consists of x(t) “pre-infection” (for short: “pre”) households;
1 − ȳ “neutral” households; and y(t) = ȳ − x(t) “post-infection” (“post”) households.
Members of the post group have been infected in the past, members of the pre group
might be infected in the future, and members of the neutral group cannot be infected,
for instance because they are immune. We allow for members of the post group to return
to the pre group; this captures the fact that households might repeatedly be infected
because they do not permanently develop immunity. Since we normalize the mass of the
total population to unity, the mass of each population group also represents the group’s
population share,

0 ≤ y(t) ≤ ȳ ≤ 1.

The initial population shares of the pre and post groups are given by x(0) = ȳ− y(0) > 0
and y(0) > 0.

While the infection status of neutral households never changes post households trans-
mit the disease to members of the pre group according to a logistic law of motion. More-
over, as mentioned before, some post households may return to the pool of pre households.
As a consequence, the share of post households evolves according to the law of motion

ẏ(t) = g(a(t)) β y(t) (ȳ − y(t))− γy(t), (1)

where a dot (as in ẏ(t)) denotes the time derivative. By definition, ẋ(t) = −ẏ(t).
Variable a(t) in the law of motion denotes an index of economic activity. We assume

that higher activity fosters infections, that is function g is increasing and smooth. Pa-
rameters β > 0 and γ ≥ 0 capture the biological characteristics of the disease. According
to equation (1), the number of pre households that get infected depends on their number,
x(t) = ȳ−y(t); the infection rate, g(a(t))β; and the number of post households, y(t). The
total increase of post households equals the number of newly infected post households net
of the share γ of post households who return to the pre group.

When γ = 0 post households cannot be re-infected. The law of motion then implies
that for any g(a(t))β > 0 and as long as y(0) > 0, as we assume, the share of the post
group is strictly increasing over time and converges to ȳ; conversely, the share of the pre

9The “S,” “I,” and “R” in SIR, SI, and SIS stands for “susceptible,” “infectious,” and “removed,”
respectively. See Hethcote (1989) and Hethcote (2000) for an overview over epidemiological models of
infectious diseases.
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group is strictly decreasing and converges to 0 in this case. When γ > 0, in contrast,
dynamics need not be monotone unless a(t) is constant.

When a(t) = a, equation (1) has the solution10

y(t) =
ȳ − γ

g(a)β

1 + e−(g(a)βȳ−γ)t
(

ȳ
y(0)
− 1− γ

g(a)βy(0)

) (2)

and y(t) converges to zero or to y∞(a) ≡ ȳ − γ/(g(a)β), depending on whether g(a)βȳ is
smaller or larger than γ. Throughout, we consider the latter case; that is, we focus on the
case where g(a)βȳ > γ such that y∞(a) > 0. For future reference we note that solving
equation (2) for t yields

t(y0, y) = ln

(
y(y∞(a)− y0)

y0(y∞(a)− y)

)
/(g(a)βȳ − γ), y0 < y < y∞(a). (3)

We assume that with Poisson arrival rate ν the disease and its consequences (described
below) disappear and β drops to zero (a “cure arrives”). For example, this might be due
to medical progress or the development of a vaccine. We also allow for the possibility that
the disease deterministically disappears in finite time, at date T .

2.1.2 Costs of Infection

Infections impose costs, for example because the health care system requires resources,
output is lost, utility foregone, or persons die. We represent such costs as a function of
the intensity of transitions from the pre to the post group—new infections—that is, as a
function of ẏ(t) + γy(t). We assume that the direct and indirect social costs associated
with these transitions equal

ψ g(a(t)) β y(t) (ȳ − y(t)), (4)

where ψ > 0 denotes the unit costs of infection. In section 5 we allow ψ to depend on
the state, ψ(y(t)). This allows us to analyze learning or congestion effects. In the former
case, the unit costs decrease with cumulative case numbers and in the latter, the unit costs
increase with infection flows, for instance due to capacity constraints in the health care
sector that lead to a deterioration of care quality and increased fatality rates, generating a
motive to “flatten the curve.”11 In the baseline analysis, we assume that ψ is a constant.

To save on notation, we sometimes use the definition

ẏg(t) ≡ g(a(t)) β y(t) (ȳ − y(t)) = ẏ(t) + γy(t)

for the gross flow (as opposed to the net flow ẏ(t)) from the pre to the post group.

10We assume that g(a)βȳ 6= γ. See for example Hethcote (1989) for the case of g(a) = ȳ = 1.
11For an analysis of optimal policy with a specific focus on capacity constraints, see for example Miclo

et al. (2020).
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2.1.3 Relation to SIR and SIS Models

The law of motion (1) nests a range of well known epidemiological models, augmented by
an effect of economic activity on the infection rate. For example, under the restrictions
γ = 0 and ȳ = 1 it corresponds to the SI model (Bailey, 1975) in which the number of
transitions from the pre to the post group first increases and then decreases as y(t) moves
from near zero towards unity.

The law of motion subject to γ = 0 also corresponds to a special case of the canonical
SIR model (Kermack and McKendrick, 1927) and the modified SIR model (Bailey, 1975).
In their general form, both SIR models characterize the evolution of three population
groups—susceptible, currently infected, and removed households—and therefore contain
two endogenous state variables (the shares of two of the three groups). Susceptible house-
holds are infected by currently infected households, they remain infectious for a random
time span, and eventually they join the pool of removed (recovered or deceased) house-
holds. These dynamics reduce to the law of motion (1) with γ = 0 when the distinction
between currently infected and removed households are blurred and the two are combined
into a single group of post households.12

Importantly, blurring the distinction between currently infected and removed house-
holds does not undermine the model’s capacity to represent societal costs of infection or
death, for representing these costs does not require to explicitly account for the stock of
currently infected households or the deceased population. It suffices to account for the
flow of infections, that is the flow from the pre to the post infection state, and to asso-
ciate costs with this flow.13 In Gonzalez-Eiras and Niepelt (2020b) we offer a detailed
discussion of the connection between SIR models and the law of motion (1). We establish
theoretically and based on numerical examples that the law of motion (1) allows to flex-
ibly capture epidemiological dynamics very much in line with those in conventional SIR
models.

While the canonical SIR model (Kermack and McKendrick, 1927) and the modified
SIR model (Bailey, 1975) yield similar predictions for transition dynamics they differ
with respect to their implications for the long-run share of the population that never
gets infected. In the canonical SIR model this long-run share is endogenous while in the
modified SIR model it always equals zero. A hybrid model augments the modified SIR
model with an additional parameter that allows to regulate the long-run population shares
(Gonzalez-Eiras and Niepelt, 2020b). In the law of motion (1) the parameter ȳ plays a
similar role. A lower ȳ implies a larger share of the population that never gets infected.
While the exogeneity of ȳ is restrictive in comparison with the endogenous herd immunity
level in some SIR models the law of motion (1) still allows to analyze long-run cumulative
infection levels. Specifically, since we allow for the random arrival of a cure, slowing down
infections constitutes a powerful strategy to increase the expected population share that

12That is, when the transition rate from currently infected to removed in the SIR model equals zero.
13Since the law of motion (1) does not explicitly account for deaths it does not account for changes

in the population size and in implied population shares due to death. These effects are negligible when
death rates are small as we assume. Blurring the distinction between currently infected and removed
households also amounts to assuming that the groups are indistinguishable in terms of their economic
characteristics (e.g., productivity). We view the consequences of this assumption as minor as well.
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is never infected.
The law of motion (1) also is closely related to the SIS model in which households, once

infected, randomly recover and return to the susceptible pool (rather than the removed
pool as in SIR models) because infection does not confer immunity (Hethcote, 1989).14

Our framework differs from the SIS model insofar as we represent infections in terms of
flows, ẏg(t), while in the SIS model y(t) corresponds to the stock of currently infected
persons. In the SIS model a higher value of γ decreases the steady-state stock y while in
our framework the relationship between γ and the steady-state infection flow ẏg∞ = γy∞ is
inverse-U-shaped. In an extended SIR model with loss of immunity (a SIR-S model) the
effect of γ on y∞ would be positive, contrary to the SIS model. We view such a positive
effect of γ on (the costs of) infections as more plausible and in our specification based on
the law of motion (1), we therefore restrict attention to small values of γ which guarantee
that γy∞ increases in γ. Specifically, we require that g(a∞)βȳ > 2γ.15

In conclusion, the law of motion (1) nests standard epidemiological models with one
endogenous state variable and constitutes a flexible and tractable alternative to other stan-
dard models with two endogenous state variables (see also the discussion in appendix A).
Relative to epidemiological models it introduces an effect of economic activity on infection
dynamics.

We summarize our assumptions regarding the epidemiological part of the model as
follows:

Assumption 1. Epidemiological dynamics are described by the law of motion (1) with
g(a)βȳ > 2γ for any a along the equilibrium path. Function g is smooth, strictly positive,
and strictly increasing. The social costs of infection are given by (4).

2.2 Economics

2.2.1 Households

A household i chooses the activity level ai(t) over time in order to maximize an intertem-
poral objective which accounts for the immediate economic effects of activity and for the
costs of infection that the household bears. Households take aggregates as well as the law
of motion (1) as given and discount the future at the rate ρ.

We represent the immediate economic effects by an indirect utility function, u, that
depends on the individual choice, ai(t), and satisfies the following assumptions:

Assumption 2. Function u is smooth, twice differentiable, and strictly concave. It
satisfies lima↓0 u

′(a) =∞ and reaches a maximum at a? ∈ (0,∞), u′(a?) = 0.

We represent the household’s costs of infection as the product of two terms: The
social costs given in (4) and a factor ξ that depends on the household’s and the aggregate

14The SIS model has ȳ = 1.
15Both in the SIS model and our framework the steady-state values satisfy g(a∞)β(ȳ−y∞) = γ. In the

SIS model we therefore have dy∞/dγ = −1/(g(a∞)β) while in our framework, dẏg∞/dγ = d(γy∞)/dγ =
y∞ − γ/(g(a∞)β) = ȳ − 2γ/(g(a∞)β). In a SIR-S model the steady-state values satisfy dy∞/dγ > 0
(because βx∞y∞ = cy∞ = γz∞, see appendix A).
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activity level. Accordingly, the household’s costs equal

ξ(ai(t), a(t))ψẏg(t).

Let ξai denote the partial derivative of ξ with respect to ai(t). We make the following
assumption regarding ξ:

Assumption 3. Function ξ is smooth, twice differentiable, and convex in ai(t). Moreover,
ξ(a(t), a(t)) ≡ 1 and ξai(ai(t), a(t)) is homogeneous.

Convexity implies that the household’s marginal costs of infection are nondecreasing
in the household’s activity level. The condition ξ(a(t), a(t)) ≡ 1 imposes the natural
restriction that the total (but not necessarily marginal) private costs sum to the social
costs. The homogeneity assumption is made for tractability reasons.

Assumption 3 allows for a variety of cost specifications and our formal results do not
require any assumptions regarding ξ beyond those introduced before.16 Our preferred
specification is given by

ξ(ai(t), a(t)) ≡ ζ
ai(t)

a(t)
+ (1− ζ), ζ ∈ [0, 1],

where we interpret ζ as the share of costs that a household perceives to depend on its
own actions. Specifically, suppose that a pre household transitions to the post pool with
a probability that is proportional to aggregate gross infection flows as well as its relative
activity level, ai(t)/a(t). A share σ of the newly infected develops symptoms generating
health care costs h0 per case which are covered by taxpayers, as well as costs h1 which
are actuarially fairly insured by an insurer whose premia are conditioned on ai(t)/a(t). In
addition, a share δ ≤ 1 of the newly infected dies, with associated costs d.17 This maps
into our formal structure as follows:

ψ = σ(h0 + h1 + δd),

ξ(ai(t), a(t)) =
h1 + δd

h0 + h1 + δd

ai(t)

a(t)
+

h0

h0 + h1 + δd
= ζ

ai(t)

a(t)
+ (1− ζ).

Note that ξ(ai(t), a(t)) = 1 in equilibrium.
To preserve a specification with y(t) as the single endogenous state variable we need

to assure that a household’s infection status is not a state in that household’s program.
To that effect we assume that households do not know their infection status (whether
they are asymptomatic or develop symptoms), for example because the cause of sickness

16For example, strict convexity of ξ would follow with ξ(ai(t), a(t)) ≡ ζ
(
ai(t)
a(t)

)ω
+ (1− ζ), ω > 1.

17In the law of motion (1) we treat σδ as negligible (and assume symmetric activity choices of all
households, for reasons discussed shortly). If we explicitly incorporated it then the population size at date
t would equal 1−σδy(t); the law of motion would be ẏ(t) = g(a(t))βy(t)(1−σδ)(ȳ−y(t))−γy(t)(1−σδ);
and the payoff from activity would equal u(a(t))(1− σδy(t)). The programs that we analyze in section 3
therefore would remain unchanged except that β and γ would be multiplied by 1− σδ ≈ 1 and u and U?

by 1− σδy(t) ≈ 1.
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cannot be identified from symptoms or because all survivors remain asymptomatic (i.e.,
δ = 1).18 As a consequence every household bears a share ξ(ai(t), a(t)) of the social costs,
independently of its infection status, and all pre, post, and neutral households choose the
same activity level.

We view the assumption that households are unaware of their infection status—and
therefore behave symmetrically—as a plausible approximation in the context of many
epidemics, including the COVID-19 pandemic.19 However, it is clearly less plausible in
the context of other epidemics. In an extension discussed in section 8 we therefore relax
the assumption and analyze whether privately or publicly observable infection status, for
instance related to the development of symptoms, changes the results.

2.2.2 Government

We assume that policy makers have instruments to control economic activity along the
activity-infection margin, for instance by imposing social distancing measures, closure of
non-essential businesses, or other lockdown measures. If so desired, the government may
also stimulate activity. Using these instruments the government faces the same program
as a social planner.

In section 5 we analyze the consequences of instrument restrictions which imply that
the government faces a more limited choice set than a social planner.

2.3 Functional Form Assumptions and Calibration

To sharpen analytical results we sometimes impose the preference assumption

u(a) = ln(a)− a+ 1,

implying a? = 1 and u(a?) = 0.20 We use this functional form because it is flexible and
convenient and yields a tractable first-order condition.21 Also, we sometimes impose the
assumption

g(a) = an, n = 1, 2,

for the effect of activity in the law of motion (1). This specification allows for both constant
and increasing returns to scale as far as the effect of activity on infectious dynamics is
concerned.22

18An alternative assumption could be that excess continuation values relative to the continuation value
of the average household are fully taxed away.

19Many individuals that have been infected with COVID-19 have remained asymptomatic or shown
only mild symptoms, see also the discussion in Farboodi et al. (2020, p. 39). As long as COVID-19 tests
are only selectively applied, as is still the case in many places at the time of this writing, most infected
individuals necessarily behave like individuals who have not been infected.

20Scaling the utility function by a constant would not affect the results.
21Several other authors adopt the same preference specification, see for instance Çenesiz and Guimaraẽs

(2020) or Farboodi et al. (2020).
22While in the canonical SIR model a doubling of population shares implies a quadrupling of infections

this is not the case in a modified SIR model (Gonzalez-Eiras and Niepelt, 2020b). The epidemiological
evidence on constant versus increasing returns to scale (“frequency dependence” versus “density depen-
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Throughout the paper we use numerical simulations to illustrate our results. The
simulations make use of the functional form assumptions described above and are based
on parameter values that we calibrate to match properties of the COVID-19 pandemic.
Our unit of time is a day and t = 0 corresponds to mid March 2020. Accordingly, we set
ρ = − ln(0.95)/365 (five percent annual discount rate) and ν = 1/(365 ∗ 1.5) (one-and-a-
half years expected duration until discovery of a vaccine).23

In appendix A we describe in detail how we calibrate the remaining parameters, using
information about parameter values in the canonical SIR model and theoretical results
connecting SIR models and the logistic model.24 This yields y(0) = 0.1893 · 10−3, β =
0.9660 · 10−1 (corresponding to an infection rate in the SIR model (at normal activity
level) of 0.1333), and ȳ = 0.75. We set γ = 0 except in section 6 where we analyze the
consequences of lack of immunity.

To calibrate the derivative ξai(a, a) and the social cost parameter ψ we use estimates
of expected health care and mortality costs as well as households’ willingness to pay to
eliminate COVID-19 induced mortality risk.25 We assume that households fully internalize
mortality risk but not the social marginal costs of health care implying a social cost
parameter ψ = 227.1 and an internalization rate ζ = 0.8266. Table 1 summarizes the
baseline calibration.

Parameter Value

ρ 0.1405 · 10−3

ν 0.1826 · 10−2

y(0) 0.1893 · 10−3

β 0.9660 · 10−1

ȳ 0.7500
ψ 0.2271 · 103

ζ 0.8266

Table 1: Baseline calibration. See the text and appendix A for explanations.

dence”) is mixed (Hethcote, 1989). Acemoglu et al. (2020) allow for n ∈ [1, 2]. Farboodi et al. (2020) opt
in their baseline for the quadratic formulation, taking as a reference the distinction made by Diamond
and Maskin (1979).

23See, e.g., Alvarez et al. (2020). The probability of discovery until time t equals 1−e−νt; the expected
duration until discovery thus equals

∫∞
t=0

tνe−νtdt = ν−1.
24We rely on parameter estimates by Atkeson (2020), Ferguson et al. (2020), Greenstone and Nigam

(2020), Hall et al. (2020), and Russell et al. (2020).
25We rely on parameter estimates by Bartsch et al. (2020), Hall et al. (2020), and Menachemi et al.

(2020).
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3 First Best and Equilibrium

Let U? ≡ u(a?)/ρ denote the value of the representative household when first-best activity
is chosen permanently and no costs of infection occur. The value U? is attained once a
vaccine is developed or all households have gained immunity because y(t) ≈ ȳ and γ = 0.

We represent the government’s optimality conditions as well as the equilibrium condi-
tions recursively. The state in the program of the government or an individual household
is given by (y, t). When T = ∞ such that there is no deterministic terminal date of the
disease then the state only includes y.

3.1 Government Program

As discussed earlier, the government effectively solves the program of a social planner
(except when it lacks sufficient instruments as in the setting analyzed in section 5). Let-
ting V denote the value function of the government, its Hamilton-Jacobi-Bellman (HJB)
equation reads

(ρ+ ν)V (y, t) = max
a
u(a)− ψẏg(y, a) + Vt(y, t) + ẏ(y, a)Vy(y, t) + νU?

subject to (1) where value function subscripts denote partial derivatives.26 The left-hand
side of the HJB equation represents the risk-adjusted required return on the value and
the right-hand side represents the dividend and capital gains components of the return.
The dividend component contains the immediate economic net benefit of activity net of
the costs of infection. The capital gains component reflects the change in the value due
to variations in the state or a sudden arrival of a cure; in the latter case all households
immediately adopt the activity level a? and they (as well as the government) attain U?.

Recall from (1) that the derivative of ẏg(y, a) and ẏ(y, a) with respect to a equals
g′(a)βy(ȳ − y). The activity level chosen by the government thus solves the first-order
condition

u′(a(y, t)) = g′(a(y, t))βy(ȳ − y) (ψ − Vy(y, t)) . (5)

3.2 Decentralized Equilibrium

The value function of the representative household, U , solves the HJB equation

(ρ+ν)U(y, t) = max
ai

u(ai)−ξ(ai, a(y, t))ψẏg(y, a(y, t))+Ut(y, t)+ẏ(y, a(y, t))Uy(y, t)+νU
?

subject to (1). As in the case of the government’s HJB equation the right-hand side of the
household’s HJB equation represents dividend and capital gains components. Unlike the
government, however, an individual household does not perceive its activity choice, ai,
to influence the law of motion of the aggregate state although in equilibrium, individual
and aggregate activity levels coincide (ai = a(y, t)). The programs of the government and

26Since we switch to recursive notation ẏ is now a function of y and a.
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an individual household therefore only differ insofar as the government appreciates the
symmetry of activity levels across households.

The household’s first-order condition with respect to ai yields

u′(ai) = ξai(ai, a(y, t))ψẏg(y, a(y, t)) s.t. (1).

Since individual and aggregate choices coincide in equilibrium the activity level in the
decentralized equilibrium satisfies

u′(a(y, t)) = ξai(a(y, t), a(y, t))ψg(a(y, t))βy(ȳ − y), (6)

where we substitute equation (1).

4 Baseline Analysis

We now turn to the analysis of equilibrium and optimal policy in the baseline model.

4.1 Optimal Allocation

If the initial value of y equals zero the law of motion (1) implies that there will be no
infections. Accordingly, the government’s optimal choice is to engage in the ideal level of
economic activity, a?, such that V (0, t) = U?. The same holds true for y = ȳ but only if
γ = 0 (no re-infections): if γ = 0 then V (ȳ, t) = U?.

For any other value of y the law of motion in combination with g′ > 0 (assumption 1)
and the equilibrium requirement a(y, t) > 0 (assumption 2) implies that the government
faces current and future costs of infection as well as, possibly, losses due to reduced
economic activity. Since the discount rate is finite this implies that V (y, t) < U? for all
y ∈ (0, ȳ), and also V (ȳ, t) < U? if γ > 0. Since V is continuous, as established in the
following lemma, V (y, t) is decreasing in a neighborhood of y = 0.

Lemma 1. Under assumptions 1 and 2, V (0, t) = U? and V (y, t) < U? for all y ∈ (0, ȳ).
Moreover, if γ = 0, then V (ȳ, t) = U?; if γ > 0, then V (ȳ, t) < U?; and V is continuous.

Figure 1 illustrates additional properties of the solution of the government’s problem
under the assumption that there is no re-infection risk (γ = 0) and focusing on the time
autonomous case (T = ∞). When γ = 0 the appropriate terminal condition to solve
the government’s HJB equation is limy→ȳ V (y) = U? (and parallel for the decentralized
equilibrium discussed below). The top left panel of the figure displays the government’s
value function, the top right panel the government’s choice of activity level, and the left
panel in the bottom row infections, all as functions of y.27 We discuss the other panel
later.

27The figure is drawn using the baseline calibration introduced earlier. Unless otherwise noted, we use
that calibration throughout when presenting numerical examples. When we plot functions of the state
or of time it is always understood that these relationships apply before a cure arrives. (Afterwards a(t)
would equal unity even if y < ȳ, etc.) Also, for simplicity we omit qualifications of this type when stating
our formal results.
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Figure 1: Value function, activity level, infections, and dividend in the government’s
program.

We note several general features. First, there exists a ymin ∈ (0, ȳ) such that V attains
its global minimum at ymin with V (ymin) < U?. This follows directly from lemma 1.
Clearly, higher costs of infection (ψ) lower the government’s value function. The following
lemma further characterizes ymin:

Lemma 2. Under assumptions 1 and 2 and if T = ∞, V has a unique minimum at
ymin ≤ ȳ/2. Moreover, if γ = 0, parameter changes that imply a higher (lower) ymin also
imply less (more) pronounced convexity of V around ymin.

Second, the optimal choice of activity is not symmetric although the function βy(ȳ−y)
is symmetric around the point y = ȳ/2. The asymmetry follows from the fact that the
government’s first-order condition accounts for the effect of activity on both the costs of
infection (this alone would yield a symmetric policy function) and the continuation value.
For example, in our benchmark specification with u(a) = ln(a)− a+ 1 and g(a) = a, the
government’s first-order condition (5) reads 1/a(y) − 1 = βy(ȳ − y)(ψ − V ′(y)), which
reduces to

a(y) =
1

1 + βy(ȳ − y)(ψ − V ′(y))
. (7)

Note that this implies (ρ+ ν)V (y) = ln(a(y)).28

Compare this to the decentralized equilibrium condition, equation (6). As we show
in the proof of proposition 1 below, ξai(a, a) = ξai(1, 1)/a = ζ/a for any ξ function that
satisfies assumption 3, not only for our preferred specification ξ(ai, a) = ζai/a + (1− ζ).
Accordingly, the decentralized equilibrium condition reduces to

a(y) =
1

1 + βy(ȳ − y)ζψ
. (8)

28Using equation (7), we have (ρ + ν)V (y) = ln(a(y)) + 1 − a(y){1 + βy(ȳ − y)(ψ − V ′(y))} + νU? =
ln(a(y)) + 1− 1 + νU? = ln(a(y)).
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Note that the equilibrium choice of activity is symmetric around ȳ/2.
Third, to gain intuition for the shape of V consider first the path of infections displayed

on the left in the bottom row of figure 1. Infections are hump shaped because the logistic
function is S shaped; the fact that a(y) varies with the state does not fundamentally
alter that result. As discussed earlier the hump shaped path of infections is consistent
with the predictions of many epidemiological frameworks. Since the costs of infection are
increasing in the number of infections they are hump shaped as well.

Consider next the dividend component of the government’s return on the right-hand
side of the government’s HJB equation, u(a(y))−ψẏg(y, a(y)). This dividend component
is displayed on the right-hand side in the bottom row of figure 1. It reflects the costs of
infection as well as the losses from reduced activity.29 The HJB equation implies that the
capital gains component of the return, ẏ(y, a(y))V ′(y) + νU?, equals the required return
on the government’s value, (ρ+ν)V (y), net of the dividend component. Equivalently, the
dividend yield and the capital gains yield add to ρ+ ν.

Over most of the state space the slope of V is relatively constant. Since infections are
hump shaped, however, capital gains are hump shaped as well. When many infections
occur, costs of infection and losses from low activity quickly materialize. Accordingly, the
value function, which discounts the future costs and losses, swiftly increases; the capital
gains are large and dividends low. In contrast, capital gains are negative for small values
of y. Infections are still low in this part of the state space but they accelerate and as a
consequence, dividends are not yet strongly depressed but the period when they will be
is approaching quickly. The value function which discounts the future costs and losses
reflects this.

4.2 Externalities

Individual households do not perceive their own choice of activity to affect the aggregate
activity level. As a consequence they do not fully internalize the welfare consequences
of higher activity. This gives rise to two externalities: a “static” one related to the
contemporaneous costs of infection, and a “dynamic” one related to the effect of activity
on the state and the continuation value. We analyze these externalities in turn.

A comparison of the first-order conditions (5) and (6) reveals two differences between
the marginal costs of activity perceived by an individual household and the government.
Subtracting the right-hand side of (5) from the right-hand side of (6) and evaluating terms
at a common activity level yields S(a, y) +D(a, y, t) with

S(a, y) ≡ ψẏg(y, a)

(
ξai(a, a)− g′(a)

g(a)

)
,

D(a, y, t) ≡ ẏg(y, a)
g′(a)

g(a)
Vy(y, t).

S(a, y) represents the static externality which arises because households do not fully inter-
nalize the effects of their choice of activity on the costs of infection. D(a, y, t) represents

29It is negative because u(a?) is normalized to zero.
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the dynamic externality which arises because households do not internalize that higher
activity increases the infection rate and thus affects the continuation value.

The static externality in turn may arise for two conceptually different reasons. To
see this consider the specification ξ(ai, a) = ζai/a + (1 − ζ). The first type of static
externality is present if ζ < 1, that is, if households view the costs they bear to only
partially depend on their own choice of activity. For example, if g(a) = a, then the static
externality is proportional to ζ − 1 < 0. The second type is present even if ζ = 1 when
g(a) is convex, g(a) = a2. In this case the static externality is proportional to −a < 0
because the individual household perceives a linear cost function (ξ(ai, a) = ai/a) while
at the aggregate level the cost function is convex. Of course, the two types of externality
may compound each other.

The following proposition characterizes the externalities for general ξ functions (recall
that ζ ≡ ξai(1, 1)):

Proposition 1. Under assumptions 1 and 3 and if g(a) = an, the total externality equals

ẏg(y, a)

a
n (ψ(ζ/n− 1) + Vy(y, t)) . (9)

The static externality is negative when ζ ≤ n.

The total externality is proportional to infections, ẏg(y, a), because infections drive
the costs of infection and change the state variable, which in turn affects the continuation
value. The factor of proportionality contains two terms, ψ(ζ/n − 1) and Vy(y, t). The
former reflects the fact that with ζ < n, households do not fully internalize the negative
consequences of their actions for the costs of infection; that is, there is a negative static
externality (of either type). The latter factor represents the effect of economic activity
on the continuation value, due to a higher infection rate. Individual households do not
internalize this effect at all, giving rise to the dynamic externality.

Figure 2 illustrates the consequences of the externalities. As in figure 1, we focus on
the time autonomous case without re-infections and we let n = 1; as discussed previously,
we calibrate ζ = 0.8266, that is, households internalize roughly eighty three percent of the
social costs of infection. The solid lines in the figure represent the outcomes implemented
by the government and correspond to the schedules in figure 2; the dashed lines represent
the equilibrium outcomes.

The externalities lower the value in equilibrium relative to the situation with govern-
ment intervention, pushing the dashed line in the left panel below the solid one. More
interestingly, the activity levels displayed in the right panel differ; early on, the govern-
ment chooses a lower activity level than in equilibrium, later on the opposite holds true.
The driving force behind the reversal is the capital gains component which lies at the
source of the dynamic externality. For y ≥ ymin the capital gains component is positive
but only the government internalizes the capital gains when choosing the activity level.
When this effect is sufficiently strong to compensate for the negative static externality
(due to ζ ≤ n) then the equilibrium activity level falls short of the level chosen by the
government. In the figure, the capital gains component (and dynamic externality) equals
zero at y = ymin ≈ 0.0212. At y ≈ 0.0257 the total externality equals zero and the
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Figure 2: Value function and activity level in the government’s program (solid) and in
equilibrium (dashed).

activity levels chosen by the government and in equilibrium coincide. For higher values
of the state the total externality is positive, that is, equilibrium activity is too low.
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Figure 3: Infections and activity level in the government’s program (solid), in equilibrium
(dashed), and with no intervention (dotted).

Figure 3 illustrates how the corrective government interventions shape infections and
activity over time. In contrast to figures 1 and 2 the horizontal axis now depicts time
(in days), not the level of the endogenous state. The figure shows that early government
intervention delays infections relative to a scenario without any adjustment of activity,
and also—but much more modestly—relative to a scenario with only voluntary reductions
in activity.

After around four months the government increases activity and infections rise as
quickly as they would have risen a month or so earlier in the scenario without adjustment
of activity. In equilibrium, in contrast, activity now falls strongly because the product
y(ȳ− y) approaches its maximum and households do not internalize the positive dynamic
externality. Evaluated at y(0), the share of the U.S. population infected in mid March
2020, we find U(y(0)) ≈ −173.8 and V (y0) ≈ −131.9. Solving

1

ρ+ ν
(ln(a?(1− φu))− a? + 1) = −173.8,

1

ρ+ ν
(ln(a?(1− φv))− a? + 1) = −131.9

yields φu = 0.2896 and φv = 0.2286. Compared with the equilibrium outcome, the
welfare gains due to optimal government intervention therefore amount to the equivalent
of roughly six percent of lifetime consumption.
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4.3 Lockdowns and Inverse Lockdowns

We refer to a “lockdown” as a situation where the government wishes to depress eco-
nomic activity below the level chosen in equilibrium. Conversely, we refer to an “inverse
lockdown” as a situation where the government wishes to stimulate economic activity
beyond the level chosen in equilibrium. Instruments to implement a lockdown include
for instance stay-at-home-orders, social distancing rules, business closures, or school clo-
sures. Instruments to implement an inverse lockdown may take the form of stimulation
measures like monetary easing, temporary sales tax reductions, employment subsidies, or
a “return-to-work bonus.”

Our preceding analysis of externalities has direct implications for lockdowns and in-
verse lockdowns. We have the following result:

Proposition 2. Under assumptions 1 and 3 and if g(a) = an, the economy is in lockdown
when

ψ(ζ/n− 1) + Vy(y, t) < 0,

and in inverse lockdown when the reverse inequality holds.

Intuitively, starting from a = a?, there is a second-order loss of reducing activity but
a first-order gain from slowing down infections. Unless there are zero infection dynamics
both households and the government choose activity levels below a?. If the static exter-
nality (represented by the term ψ(ζ/n− 1)) and the dynamic externality (represented by
the term Vy(y, t)) combined are negative then the government perceives a larger first-order
gain from lowering activity. In this case the government imposes a lockdown in order to
correct the distorted individual choices. Note that the condition in proposition 2 is not
directly affected by the parameters γ or ν which determine the rate of re-infections or the
arrival rate of a cure. These parameters matter only indirectly because they affect the
value function.

Turning to the timing of lockdowns and inverse lockdowns, recall that infections
increase the government’s continuation value—infections induce capital gains—once y
reaches the value ymin. Let yc denote the value of y (if it exists) at which the total exter-
nality equals zero, ψ(ζ/n − 1) + Vy(y

c, t) = 0; and let Vy
max denote the maximum value

of Vy(y, t), both along the path implemented by the government. We have the following
result:

Proposition 3. Under assumptions 1 and 3 and if g(a) = an and ζ < n, lockdowns occur
as follows:

i. Starting from small y, the government immediately imposes a lockdown;

ii. if γ = 0 and Vy
max > ψ(1 − ζ/n) then the government also imposes an inverse

lockdown;

iii. if V is locally convex at y = yc then an inverse lockdown immediately follows the
lockdown.
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The first part of proposition 3 is consistent with the fact that during the ongoing
COVID-19 pandemic many governments imposed lockdown measures early on. The last
part, in contrast, which concerns the reversal from a lockdown to an inverse lockdown,
appears more surprising. It might partly explain stimulus measures such as temporary
sales tax reductions or employment subsidies; and it suggests quite different policy in-
terventions at later stages of an epidemic.30 In section 5 we analyze the consequences of
constraints that make it impossible for the government to impose an inverse lockdown.

Note that the basic intuition underlying the reversal result is very general: Since an
epidemic generates costs the value function during the transition is lower than after the
transition; that is, at some point, society experiences capital gains. These capital gains
arise due to the change of an aggregate state variable (or many such state variables) which
an household takes as given; that is, the capital gains are not internalized by households.
As long as the capital gains are sufficiently large to outweigh negative static externalities
the reversal result thus follows.

Under our baseline calibration for the time autonomous case the optimal lockdown
lasts about ninety days. During that period the average activity level lies at roughly
seventy six percent; without government intervention it would have averaged more than
ninety three percent.

5 Robustness

In this section, we check the robustness of the quantitative results that we have derived
so far. Because the model is so easy to solve we consider a host of different scenarios.
They are distinguished by the specification of the law of motion, the costs of infection,
or the parameter values we impose. We also consider scenarios in which the regime
stochastically changes or in which the government faces constraints on policy instruments.
Subsequent sections are devoted to the analysis of more wide ranging extensions of the
model, including model variants with re-infections, a deterministic arrival of a cure, and
observable infection status.

5.1 Quadratic Effect of Activity on Infections

As discussed previously the epidemiological evidence on returns to scale in infections is
mixed (see, e.g., Hethcote, 1989). In a first robustness check we therefore allow function
g to exhibit increasing returns to scale.

When n = 2 such that g(a) = a2 rather than a, reductions in activity suppress
infections more strongly and this alters the trade-offs perceived both by the government
and individual decision makers. Equations (7) and (8) no longer apply. Instead, the
optimal and equilibrium activity levels are the (positive) solutions of quadratic equations,
and the value functions U and V change accordingly.

30Note that the proposition allows for repeated reversals between lockdowns and inverse lockdowns
(depending on the shape of V ), a feature that we do not find in any of our simulations.
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Scenario yc tc(days) ac φu − φv

Baseline 0.0257 90 0.7570 0.0610

Quadratic effect of activity 0.0745 203 0.6423 0.0342
Stronger curvature of u 0.0239 77 0.8766 0.0235
Higher costs of infection 0.0276 105 0.6616 0.0926
Endogenous costs: Congestion 0.0624 108 0.7529 0.0869
Endogenous costs: Learning 0.0194 85 0.7559 0.0622
Higher arrival rate of a cure 0.0385 108 0.6881 0.0648
Regime change: Reduction in β 0.0361 108 0.6750 0.0370
Regime change: Multiple waves 0.0650 136 0.5994 0.0670
Constraints on policy instruments 0.0359 105 0.6956 0.0048

Table 2: Key statistics for different scenarios. yc denotes the value of the state at which
the lockdown ends and, absent constraints on policy instruments, the total externality
equals zero. With such constraints the total externality equals zero slightly after yc is
reached. tc denotes the duration of the lockdown and ac the average activity level during
the lockdown. φu−φv measures the welfare gain of the government intervention expressed
in terms of the equivalent life-time consumption variation.

Figure 9 in appendix C compares the optimal and equilibrium activity levels when
n = 2 with the corresponding outcomes in the baseline model. The panels on the left-
hand side represent the baseline model and the panels on the right-hand side the case with
n = 2. The two panels in the top row represent the results in y-space and the two panels
in the bottom row illustrate dynamics over time. In addition, table 2 summarizes key
statistics: The value yc at which the total externality equals zero; the time span tc until
yc is reached; and the average activity level ac under the lockdown. The table collects
these statistics for all scenarios we consider in this section and compares them to the
outcomes in the baseline model and the case with re-infections considered in section 6.

With n = 2 both ymin and yc increase (to approximately 0.0301 and 0.0745 respec-
tively). The government reduces activity substantially more strongly than when n = 1, in
contrast to what households choose in equilibrium. Accordingly, the transition dynamics
in the two cases look more similar than with n = 1 and the welfare gains from intervention
decrease to roughly three and a half percent. Nevertheless, due to the significantly slowed
down infection dynamics, the optimal lockdown extends over a much longer period, 203
days.

22



5.2 Stronger Curvature of u

Next we consider a modified specification of preferences: We assume that rather than
u(a) = ln(a)− a+ 1 the net direct utility from activity is given by

u(a) =
a−1

−1
− a+ 2;

that is, the intertemporal elasticity of substitution for consumption equals one half rather
than one as posited in the baseline model. Figure 10 in appendix C and table 2 summarize
the results.

With the lower elasticity of substitution activity is reduced by less, both in equilibrium
and under the optimal policy. The lockdown also is shorter and the welfare gains due to
the optimal government intervention are smaller.

5.3 Higher Costs of Infection

Next we consider the consequences of higher costs of infection. Mulltiplying the cost
parameter ψ by 1.5 implies, not surprisingly, that both the government and households
reduce activity more strongly than in the baseline case. As a consequence, transition
dynamics slow down, see figure 11 in appendix C and table 2. The optimal lockdown is
stricter, lasts half a month longer than in the baseline, and yields higher benefits from
government intervention.

5.4 Endogenous Costs of Infection: Congestion and Learning
Effects

Next we relax the assumption that the unit costs of infection—the factor ψ entering the
costs of infection (4)—are an exogenous constant. We consider two alternative specifica-
tions. In the first specification, we replace ψ in (4) by ψfy(ȳ− y) where ψf > 0. That is,
we assume that the costs of infection are quadratic in y(ȳ − y) rather than linear as we
have assumed so far. This specification captures congestion effects, for instance due to
the fact that capacity constraints in the health care sector lead to a deterioration of care
quality and increased fatality rates as infection flows rise. In COVID-19 related policy
discussions congestion effects are an important motivation for calls to “flatten the curve.”

In the second specification, we replace ψ in (4) by ψl(2− y/ȳ) where ψl > 0. That is,
we assume that the costs of infection per unit of infection flow are decreasing in the share
of the population that has been infected in the past. More specifically, we assume that the
unit costs halve during an epidemic. This specification captures learning-by-doing effects,
for instance due to the fact that medical personnel learns by experience how to diagnose,
triage, or treat patients while health authorities improve administration and logistics.

Both specifications require slight modifications in our calibration strategy. As we
explain in appendix A we set ψf = 6ψ/ȳ2 and ψl = ψ2/3.

We find that congestion effects lengthen the optimal lockdown but have no discernible
effect on the optimal activity level; the welfare gains due to the optimal lockdown policy
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rise. Learning shortens the lockdown duration slightly but again has little effect on the
optimal activity level, see figures 12 and 13 in appendix C as well as table 2.

5.5 Higher Arrival Rate of a Cure

Next we consider the consequences of a higher arrival rate of a cure, reflected in a multipli-
cation of the parameter ν by 1.5. The government responds aggressively to the prospect
of a more likely exit from the epidemic, exploiting the possibility of intertemporal substi-
tution by more strongly reducing activity. In contrast, households do not respond because
their activity choice is unaffected by the arrival rate. Accordingly, the optimal lockdown
lasts longer and is stricter but the welfare gains of that policy are of a similar magnitude
as in the baseline case, see figure 14 in appendix C and table 2.

5.6 Stochastic Regime Change: Reduction in β and Multiple
Waves

Next, we ask how expected changes in the epidemiological environment affect optimal
policy. Scenarios where such a question might arise include settings where policy makers
anticipate virus mutations; new medical treatments; improved test, trace, and quarantine
strategies; improved implementability of lockdown restrictions; or, in contrast, increased
political resistance against such restrictions.

We consider two specific scenarios. In the first one we allow for a permanent reduction
in β by fifty percent (reflecting, e.g., improved test, trace, and quarantine strategies) that
materializes stochastically, with arrival rate µ. We assume that µ = 1/90, reflecting an
expected duration of three months until the regime changes.31

The left panel of figure 4 depicts the government’s value function when β assumes the
baseline value (solid line); when β permanently assumes the lower value (dashed line); or
when β assumes the baseline value but may randomly fall (dotted line). The right panel
depicts the corresponding activity levels chosen by the government in the three cases.
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Figure 4: Value function and activity level in the government’s program when β assumes
the baseline value (solid), permanently assumes the lower value (dashed), or assumes the
baseline value and may randomly fall (dotted).

31For example, Fetzer and Graeber (2020) report that the U.K. implemented a test-and-trace regime
by late May; exploiting a data processing error they conclude that the new regime significantly lowered
infection rates.
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Not surprisingly, the value function when regime change is possible is (slightly) higher
than in the baseline case; this reflects the upside risk. More importantly, the prospect of
this upside risk leads the government to wait longer before relaxing the lockdown, and
to substantially reduce activity levels until β falls. Relative to the baseline case, yc and
the duration of the lockdown as well as its strictness increase. Similarly to the case with
a higher ν the government intertemporally substitutes, anticipating a better trade-off
between lives and livelihoods in the future. Nevertheless, the welfare gains from optimal
government intervention relative to no intervention fall compared with the baseline case,
see figure 15 in appendix C and table 2.

In the second scenario we allow for multiple waves of infection. More specifically, we
assume that with arrival rate µ the number of persons in the post group reverts back
to y0.32 As a consequence the HJB equation features an additional capital gains term,
µV (y0). To capture the fact that seasonal factors might affect the start of a new wave
(as was the case during the Spanish influenza) we let µ = 1/365, that is, a new wave
arrives on average after a year. We assume that there is no upper bound to the maximum
number of possible waves.
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Figure 5: Value function and activity level in the government’s program without (solid)
and with (dashed) the possibility of multiple waves.

We find that the prospect of multiple waves induces the government to behave even
more cautiously. The optimal lockdown duration increases to more than four and a half
months, with an average reduction of the activity level to less than sixty percent. The
welfare gains due to optimal government intervention increase to nearly seven percent,
see figure 16 in appendix C and table 2.

5.7 Constraints on Policy Instruments

Finally, we analyze how important “inverse lockdown” measures are for the welfare gains
due to optimal government intervention. More specifically, we assume that government
can curtail economic activity (impose a lockdown) but lacks the powers to correct house-
holds’ unwillingness to reengage after a lockdown (impose an inverse lockdown). The
relationship between the value functions of the social planner, the government, and house-
holds in equilibrium differs in this case from the situation considered so far: In the range
where the social planner imposes an inverse lockdown (high y values) the government’s

32This could reflect a new strain of virus that is associated with a massive loss of immunity.
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value function coincides with the equilibrium value function; and in the range where the
social planner imposes a lockdown (low y values) the government’s value function lies
between the value function of the social planner and the equilibrium value function.

To solve for the government’s value function subject to the constraints on its instru-
ments we need to impose a modified boundary condition. In the baseline scenario this
boundary condition stipulates that the government’s and the household’s equilibrium
value functions coincide at y = ȳ because the epidemic has ceased to exist at that point.
Now, we instead impose the condition that the value functions coincide starting from
some endogenous value of the state, ŷ say, at which the government ends the lockdown
(and would like to switch to an inverse lockdown but cannot do that). Formally, we first
solve for U and then find V and ŷ by means of the value matching and smooth pasting
conditions

V (ŷ) = U(ŷ) and V ′(ŷ) = U ′(ŷ).

We find that the constraints imply a longer and stricter lockdown than in the baseline
scenario. The activity trend changes abruptly at y ≈ 0.0359 when the lockdown ends.
Thereafter, the dynamics under the optimal government policy resemble those in equilib-
rium, with a time lag. By definition, the welfare gains due to government intervention are
smaller than when the government is unconstrained. In fact, the welfare gains are very
small—the difference between φu and φv falls to less than one half percent, see figure 17
in appendix C and table 2.

5.8 Summary

The robustness checks suggest that the optimal lockdown lasts for three to four months,
with activity reductions by twenty five to forty percent and welfare gains from the optimal
government intervention on the order of three to nine percent of lifetime consumption.
There are three outlier cases, however. First, when activity enters the law of motion
quadratically the optimal lockdown extends over a much longer period, nearly seven
months. Second, when the intertemporal elasticity of substitution equals one half the
reduction of activity during the lockdown only amounts to roughly twelve percent. Third,
when the government can impose a lockdown but lacks instruments to subsequently stim-
ulate activity then the welfare gains are nonsignificant.

6 Lack of Immunity

In the baseline specification households who undergo infection and recovery are protected
from re-infection such that herd immunity is eventually attained (i.e., y reaches ȳ). But in
some epidemics re-infection risk is nonnegligible. For example, at the time of this writing,
research on COVID-19 suggests that immunity wanes and individuals with antibodies
may re-contract the disease (see the discussion in the introduction).

To study the implications of lack of immunity we consider the case with γ > 0, that is,
we assume that persons who have undergone infection in the past may join the pre-group
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again and subsequently re-contract the disease. Accordingly, the steady-state value of y
is given by y∞(a) ≡ ȳ − γ/(g(a)β); due to γ > 0 it lies strictly below ȳ.

In decentralized equilibrium, the steady state (a∞, y∞) is characterized by the law of
motion and the first-order condition. Letting for simplicity g(a) = a, equations (1) and
(8) yield

γ = a∞β(ȳ − y∞),

a∞ =
1

1 + βy∞(ȳ − y∞)ζψ
.

This system has a unique positive solution,

a∞ =
1− γψȳζ

2
+

ϕ

2β
,

y∞ =
1 + γψȳζ

2γψζ
+

ϕ

2βγψζ

with ϕ ≡
√
β
√

4γ2ψζ + β(1− γψȳζ)2. Differentiating this solution implies that in a
neighborhood of γ = 0 (and a∞ = 1), a∞ is U-shaped; y∞ decreases; and steady-state in-
fections ẏg = γy∞ are inverse-U-shaped in γ. For the reasons discussed in subsection 2.1.3
only the increasing segment of this inverse-U-shaped relationship is relevant.

The steady state in the government’s program solves the conditions

γ = a∞β(ȳ − y∞),

a∞ =
1

1 + βy∞(ȳ − y∞)(ψ − V ′(y∞))
,

(ρ+ ν)V ′(y∞) = −a∞β(ȳ − 2y∞)(ψ − V ′(y∞))− γV ′(y∞),

where the first equation follows from equation (1); the second from the first-order con-
dition (7); and the last from the envelope condition (using the steady-state property
ẏ(y) = 0). Eliminating y∞ and V ′(y∞) yields the equation

(ρ+ ν + γ)γψ = a∞(1− a∞)β

(
ρ+ ν

a∞βȳ − γ
+ 1

)
, (10)

which characterizes the government’s choice of a∞. The ratio in parentheses is positive
(because y∞(a∞) > 0) and a∞ ∈ (0, 1) such that both the left- and the right-hand side of
equation (10) are strictly increasing in γ. Moreover, the right-hand side is non-monotone
in a∞. Equation (10) thus generally admits multiple solutions. Of course, only one of them
constitutes the outcome implemented by the government. In fact, for small γ (such that
the model is well specified) the solution of equation (10) necessarily yields a government
choice for a∞ which is decreasing in γ.

The following proposition compares the equilibrium steady state and the steady state
in the government’s program. Moreover, it indicates that an increase in γ reduces activity
in the government’s program around ymin where lockdowns are in place.
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Proposition 4. Under assumptions 1–3 and if γ > 0, T = ∞, u(a) = ln(a) − a +
1, and g(a) = a, there exists a unique steady state in decentralized equilibrium. The
government’s choices of a∞ and y∞ exceed the corresponding equilibrium values if (ρ +
ν)(1 − ζ) < ζβȳ. In a neighborhood of y = ymin the government’s choice of activity
satisfies da(y)/dγ < 0 when 2βȳ > (4 + βȳ2ψ)γ.

This result implies that absent a static externality (ζ = 1) the government’s choice of
a∞ necessarily exceeds the equilibrium level of a∞, and more concern about the future
(low ρ and/or ν) as well as a high infection rate (β) and a high ȳ render the same result
more likely. When the static negative externality is maximal (ζ = 0), in contrast, then the
steady-state equilibrium activity level is suboptimally high. Intuitively, this reflects the
contrasting effects of static and dynamic externalities. On the one hand, the equilibrium
level of a∞ tends to exceed the optimal level when households do not fully internalize the
costs of infection (ζ < 1). On the other hand, the parameters β, ȳ, ρ, and ν increase
the capital gains in the government’s problem for given (a∞, y∞) and this reduces the net
costs of infection perceived by the government.

Next, we turn to the dynamic analysis. Since with γ > 0, ȳ is no longer a rest point the
boundary conditions that we had imposed so far (limy→ȳ U(y) = U? and limy→ȳ V (y) =
U?) no longer apply. Instead, we impose the boundary condition that the value function
evaluated in steady state (characterized above) equals the capitalized steady-state utility
flows net of the steady-state flow costs of infection. That is, for example, we solve the
government’s HJB equation subject to the boundary condition

(ρ+ ν)V (y∞) = u(a∞)− ψa∞βy∞(ȳ − y∞),

where a∞ is optimal.
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Figure 6: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with lack of immunity (right panels).
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In the quantitative analysis, we let γ = 1/365 (i.e., immunity is lost on average
after a year).33 We find that the steady-state activity level drops to a∞ = 0.9696 and
y∞ = 0.7208, while in equilibrium, a∞ = 0.6372 and y∞ = 0.7055. Moreover, the strictly
positive value of γ substantially shifts the value functions U and V downward. While in
the case with γ = 0, U and V converged as y → ȳ this is no longer the case when there
is lack of immunity.

Proposition 4 implies that γ reduces the government’s choice of activity when a lock-
down is in place. We find that, indeed, the optimal lockdown lasts much longer than
in the baseline case—approximately half a year—and is very strict as the activity level
is reduced to just above fifty percent on average. The welfare gains from the optimal
government intervention exceed seven percent, see figure 6 and table 2.

7 Deterministic Arrival of a Cure

In the baseline specification a cure arrives stochastically with arrival rate ν. But in some
settings it appears more plausible to view the arrival of a vaccine or other form of cure as
a deterministic rather than stochastic process. For example, several promising candidates
for an effective vaccine, of which at least one would work with near certainty, might
undergo final trials or require final regulatory approval (as was the case in Fall 2020
in the context of COVID-19). Or a poor country which is dependent on international
financial and logistic assistance might have to wait for a pre-specified period until doses
are supplied by donor institutions and distributed domestically.

To represent such a setting with a deterministic arrival of a cure, we let T < ∞ and
ν = γ = 0. Time therefore becomes a second state variable and the government’s problem
may be formulated more conveniently using the Hamiltonian

H(a(t), y(t), t) = u(a(t))− ψg(a(t))βy(t)(ȳ − y(t)) + µ(t)g(a(t))βy(t)(ȳ − y(t)),

where µ(t) denotes the (present value) multiplier attached to the law of motion. An opti-
mal plan satisfies the boundary condition µ(T ) = 0 as well as the conditionsHa(a(t), y(t), t) =
0 and Hy(a(t), y(t), t) = −µ̇(t) + ρµ(t).34 This implies

u′(a(t)) = g′(a(t))βy(t)(ȳ − y(t)) (ψ − µ(t)) ,

µ̇(t) = g(a(t))β(ȳ − 2y(t)) (ψ − µ(t)) + ρµ(t)

as well as the law of motion, ẏ(t) = g(a(t))βy(t)(ȳ − y(t)).
As we will show next the government’s optimal policy may not be continuous in

T . We establish this result for the special case with ρ = 0 which allows for a sharper
characterization:

33In the absence of reliable estimates about the duration of immunity against COVID-19 we set this
number to make the results comparable with the multiple waves scenario analyzed in section 5.

34The multiplier µ(t) corresponds to the partial derivative Vy(y(t), t) such that µ̇(t) = Vyt(y(t), t) +
Vyy(y(t), t)g(a(t))β(ȳ − 2y(t)).
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Proposition 5. Under assumption 1 and γ = ρ = ν = 0 and T < ∞, the government’s
optimal choice satisfies a(t) = a. If, moreover, u(a) = ln(a) − a + 1, g(a) = a, and y0

is sufficiently small (as defined in the proof) then the optimal a as a function of T is
dis-continuous.

The first part of proposition 5 implies that the government’s program reduces to the
choice of a constant activity level. Starting from a low value of T , this optimal choice
responds to an increase in T by reducing activity and allowing for a higher stock of post
households, y(T ), when the cure arrives.

The second part of the proposition states that as T increases further, the costs of
curtailing activity eventually become so large that it is no longer optimal to impose a
severe lockdown in order to keep y(T ) in check. Instead it becomes optimal to choose a
much higher activity level and to “give up,” i.e., to accept higher infection numbers.35

To illustrate this important result figure 7 displays the contour lines of the government’s
objective function under our baseline calibration. The figure indicates that, as T increases
(along the vertical axis), the optimal activity level first falls before eventually (when
T ≈ 200) dis-continuously jumping to a value close to unity.

The result of a nonmonotone (in T ) optimal activity reduction can potentially ratio-
nalize large differences in public health policies across time and space in an epidemic.
Applied to our motivating examples, it implies that when vaccine trials in rich countries
or the time to distribution of vaccines in poor countries are expected to last very long,
strict lockdowns are unlikely to be optimal.

8 Observable Infection Status

In the baseline specification infection status is unobserved and as a consequence all house-
holds in the pre, post, and neutral groups choose the same activity level. As we discussed
in section 2 this is a plausible approximation in the context of some epidemics, includ-
ing the COVID-19 pandemic, but less so for others. We now relax the assumption and
consider the consequences of observable infection status.

Specifically, we assume that infected households who develop symptoms can trace
these symptoms to the infection and thus become aware of their infection status. Upon
recovery they gain immunity (γ = 0).36 Since σ denotes the symptomatic share in the
post pool a share σy of the population knows that it is immune. Households in this group
choose the activity level a? since they do not face any risk of future infection.

When the infection status or activity choice of a household is public information
households in the pre group will avoid contact with known members of the post group in
order to minimize privately costly infection risk. Accordingly, switching back to recursive
notation, the law of motion changes to

ẏ(y, a) = g(a)β(1− σ)y(ȳ − y), (11)

35The government’s program does not satisfy Arrow’s second order conditions because the maximized
Hamiltonian fails to be concave in y for all t ∈ [0, t]. Accordingly, the first-order conditions are not
sufficient for a global maximum.

36We maintain the assumption that the death rate δ is negligible.
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Figure 7: Contours of the government’s objective function when T is finite.

as households in the pre group (with mass ȳ−y) only interact with asymptomatic members
of the post group (with mass (1− σ)y).

Observability implies that the value functions of households differ depending on whether
they have or have not developed symptoms. The value function of a household that expe-
rienced symptoms in the past is given by U? because that household chooses a? and is not
exposed to any further infection risk. The value function (in the time autonomous case
and re-introducing stochastic arrival of a cure) of a household that did not experience
symptoms so far, say Ũ(y), resembles the value function in the baseline model, U(y),
with two differences. First, infection risk in that group reflects the fact that aggregate
infection flows are fully concentrated in the group. That is, households without symptoms
face the infection flow ẏ(y, a)/(1− σy). Second, infections do not only generate costs, ψ,
but also release the affected households with probability σ into the symptomatic pool
with continuation value U?.

Accordingly, the HJB equation reads

(ρ+ ν)Ũ(y) = max
ai

u(ai) +
ai
a(y)

ẏ(y, a(y))

1− σy

(
−ζψ + σ

(
U? − Ũ(y)

))
− ẏ(y, a(y))

1− σy
(1− ζ)ψ + ẏ(y, a(y))Ũ ′(y) + νU?
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subject to the law of motion (11). The first-order condition is given by

(1− σy)u′(ai) =
ζψ − σ(U? − Ũ(y))

a(y)
g(a(y))β(1− σ)y(ȳ − y).

The government’s program, which is represented by the HJB equation

(ρ+ ν)V (y) = max
a
σyu(a?) + (1− σy)u(a)− ψẏ(y, a) + ẏ(y, a)V ′(y) + νU?,

yields the first-order condition

(1− σy)u′(a(y)) = (ψ − V ′(y))g′(a(y))β(1− σ)y(ȳ − y).

Unlike the household’s program, which is now type dependent, the government’s program
is nearly unchanged and the first-order condition differs from the baseline case only insofar
as β is replaced by β(1− σ)/(1− σy) < β.

When we impose the standard functional form assumptions g(a) = a and u(a) =
1 + ln(a) − a, the first-order conditions imply that the activity choice of asymptomatic
households in equilibrium, say ã(y), and by the government, respectively, satisfy37

ã(y) =
1

1 +
(
ζψ − σ(U? − Ũ(y))

)
β(1− σ)y(ȳ − y)/(1− σy)

,

a(y) =
1

1 + (ψ − V ′(y))β(1− σ)y(ȳ − y)/(1− σy)
.

Note that the three differences between ã(y) and a(y) reflect the static externality (the
ζ term in the household’s first-order condition), the dynamic externality (only the gov-
ernment’s first-order condition contains the derivative of the value function), and the
probability of a type change (the U?− Ũ(y) term in the household’s first-order condition).
In equilibrium, the latter effect introduces an incentive for asymptomatic households to
more strongly engage in activity. Substituting the activity choices back into the respective
HJB equations yields differential equations that can numerically be solved.

Under our baseline calibration and assuming that σ = 0.1 we find similar results
as in the baseline scenario.38 The critical value yc equals roughly 0.0315, the lockdown
duration tc amounts to 104 days, the activity level of asymptomatic households during the
lockdown averages 0.7604, and the welfare gains from optimal government intervention
are roughly five percent of lifetime consumption.

Next, we turn to the case with private information about one’s infection status and
activity choice.39 The law of motion now reads

ẏ(y) = g(ā(y))βy(ȳ − y), (12)

37Average activity in equilibrium is given by σya? + (1− σy)ã(y); under the optimal policy, it is given
by the same expression with ã(y) replaced by a(y).

38For evidence on the share of symptomatic post households see footnote 48.
39In the context of COVID-19 private information may seem more relevant than public information as

some symptoms, such as loss of smell and taste, are unobserved by third parties.
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where ā(y) ≡ (σya? + (ȳ − σy)ã(y))/ȳ denotes the average activity of pre and post
households. There are two differences between the laws of motion (11) and (12). First, the
1−σ term in the former equation is replaced by unity, as in the baseline law of motion (1),
reflecting the fact that all post households interact with pre households. Second, related,
the groups whose activity affects infection dynamics are the pre households, the post
households unaware of their infection status, and the aware post households. While the
former two groups choose the activity level ã(y) the latter chooses a?.

We assume that symptomatic households drop out of the insurance scheme such that
their value function is given by U?, as in the case with public information.40 The value
function of an asymptomatic household, Ũ(y), corresponds to the function in the public
information case except for the modified law of motion. The activity level a(y) entering the
HJB equation continues to represent the activity level chosen by all insured households.
The first-order condition,

(1− σy)u′(ai) =
ζψ − σ(U? − Ũ(y))

a(y)
g(ā(y))βy(ȳ − y),

implies the following equilibrium activity choice of asymptomatic households once we let
g(a) = a and u(a) = 1 + ln(a)− a:

ã(y) =
1− σ(y/ȳ)a?

(
ζψ − σ(U? − Ũ(y))

)
βy(ȳ − y)/(1− σy)

1 + (1− σ(y/ȳ))
(
ζψ − σ(U? − Ũ(y))

)
βy(ȳ − y)/(1− σy)

.

As expected, dã(y)/dσ < 0 (given Ũ), because higher average activity and thus, infec-
tion rates, lead the households unaware of their infection status to shield more. The
government’s program is the same as in the baseline model (where σ = 0) because the
government chooses the same activity level for everybody.41

Imposing the same parameter values as in the public information case we find similar
results. The optimal lockdown lasts 103 days, the activity level during the lockdown
averages 0.7567, and the welfare gains from the optimal government intervention are
approximately six percent. The transition dynamics in the economies with public or
private information about the infection status broadly resemble those in the baseline model
as far as asymptomatic households are concerned, see figures 18 and 19 in appendix C.

40This is consistent with the private information assumption when insurers must not disclose their
clients, perhaps for contractual or legal reasons.

41The government cannot gain from implementing two different activity levels. To see this, suppose that
incentive constraints would not bind and the asymptomatic and symptomatic households had activity
levels a1 and a2 > a1, respectively, such that ā(y) = (σya2+(ȳ−σy)a1)/ȳ. The direct utility gain relative
to the situation with a common activity level a1 would equal σy(u(a2)−u(a1)) ≈ u′(a1)(a2−a1)σy, while
the cost would be equal to (ψ−V ′(y))(g(ā)−g(a1))βy(ȳ−y) ≈ (ψ−V ′(y))g′(a1)(a2−a1)βy(ȳ−y)σy/ȳ.
The first-order condition for a common activity level implies u′(a1) = (ψ − V ′(y))g′(a1)βy(ȳ − y). Since
ȳ < 1 it follows that the losses from a discriminatory policy would exceed the gains.

33



9 Conclusion

We have developed a flexible model of infectious dynamics with a single endogenous state
variable and economic choices by households and a government. Government intervention
yields welfare gains relative to laissez faire because households do not internalize static
and dynamic externalities although they do adjust their behavior for fear of infection.

We find several novel theoretical results. First, a lockdown is generally followed by
its opposite—policies to stimulate activity beyond the privately optimal level. Economic
activity generates negative static externalities and initially, these induce the government
to impose restrictions. But eventually, activity and the associated infections also gen-
erate positive dynamic externalities—capital gains for society—and once the latter are
sufficiently strong they outweigh the static externalities and call for higher activity than
what households would privately choose. This mechanism extends to many richer models
independently of the number of state variables.

Second, re-infection risk implies more cautious activity choices in steady state than
optimal if static externalities are small. Intuitively, even if infections are endemic there are
capital gains that the government internalizes but the private sector does not. Moreover,
when a lockdown is in place the government’s choice of activity level is decreasing in
re-infection risk.

Third, when a cure arrives deterministically, optimal policy is dis-continous. The
lockdown is light when the arrival date exceeds a specific value, but strict otherwise.
Intuitively, a later arrival date requires increasingly large reductions in activity, for a
longer time in order to keep infections in check. At some point the government is no
longer willing to bear these increasingly high costs of “lost livelihoods” and optimally
accepts higher infection levels earlier on, turning a blind eye on the epidemic.

Calibrated to the ongoing COVID-19 pandemic our baseline specification suggests that
starting from mid March 2020, a lockdown should optimally have lasted for three months
with economic activity reduced by twenty five percent. Exploiting the flexibility of our
framework we run a battery of robustness checks, with a focus on different parameter
values or infection cost functions, potential regime change, or restrictions on government
instruments, and we analyze various extensions. Across almost all of these alternative
specifications the basic message remains one of optimal lockdowns for three to four months
with activity reductions by twenty five to forty percent and significant welfare gains from
optimal government intervention.

Only when activity enters the law of motion quadratically or in the presence of re-
infection risk does the optimal lockdown extend over a much longer period, between six
and seven months, and only when the intertemporal elasticity of substitution equals one
half rather than unity is the reduction of activity during the lockdown much smaller,
roughly twelve percent. With re-infection risk, in contrast, the optimal lockdown is much
stricter, with activity reduced by almost fifty percent. Finally, only when the government
can impose a lockdown but lacks instruments to subsequently stimulate activity are the
welfare gains nonsignificant.

Our framework can serve as a workhorse model and allows for many extensions. One
interesting avenue for further research would be to introduce additional dimensions of
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heterogeneity relative to those present in section 8. Another, related one would be to
introduce conflicts of interest in order to analyze political economy considerations for
governments that fight an epidemic.
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A Calibration Strategy

A.1 Law of Motion (1)

In this appendix, we describe how we use information about parameter values in the
canonical SIR model to deduce parameter values for the law of motion (1).42

A.1.1 Canonical SIR Model

The canonical SIR model due to Kermack and McKendrick (1927) specifies laws of motion
for the population shares of three groups: the “susceptible,” the “infected” or “infectives,”
and the “removed.” Their respective population shares at time t ≥ 0 are denoted by x(t),
y(t), and z(t), respectively, where x(t) + y(t) + z(t) = 1.43 We normalize the mass of the
total population at time t = 0 to unity.

At time t = 0 the population consists of x(0) susceptible persons and a few infected
persons, y(0). There are no removed persons at this time, z(0) = 0. In each instant after
time t = 0, infected persons transmit the disease to members of the susceptible group and
a share of the infected either dies or recovers and develops immunity. Formally,

ẋ(t) = −b(t)x(t)y(t), (13)

ẏ(t) = −ẋ(t)− (cd + cr)y(t), (14)

ż(t) = (cd + cr)y(t). (15)

Here, b(t) denotes a possibly time-varying infection rate. The extent to which susceptible
persons are infected depends on their number, x(t); the infection rate, b(t); and the
population share of infected persons. The number of infected persons increases one-to-
one with the susceptible persons that get infected, while a share c ≡ cd+cr of the infected
population dies or recovers; the coefficients cd and cr parameterize the flow into death
and recovery, respectively.

Consider the case where b(t) is constant at value b. Inspection of equations (13) and
(14) reveals that for bx(0) > c the share of infected persons increases until it reaches a
maximum when x(t) = c/b; thereafter, the share declines. Intuitively, when x(0) falls
short of c/b (the “herd immunity level”) then there are fewer new infections of susceptible
persons than outflows from the infected pool due to recoveries and death. As is well
known (e.g., Theorem 2.1 in Hethcote, 2000), x(∞) falls short of the herd immunity level
unless x(0) = c/b = x(∞) and y(0) = 0.44

In the SIR-S model a share γ of the removed population loses immunity and moves

42See Gonzalez-Eiras and Niepelt (2020b) for a broader and more detailed discussion, also with respect
to other SIR models.

43We follow the notation introduced by Kermack and McKendrick (1927).
44Note also, from equation (14), that at the beginning of an epidemic with x(t) ≈ 1 and z(t) ≈ 0,

b approximately equals the growth rate of the number of persons who are or were infected, ẏ(t)+ż(t)
y(t)+z(t) =

b x(t)y(t)
y(t)+z(t) ≈ b.
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back to the susceptible pool. Accordingly, the dynamic system is given by

ẋ(t) = −b(t)x(t)y(t) + γz(t),

ẏ(t) = b(t)x(t)y(t)− cy(t),

ż(t) = cy(t)− γz(t).

In steady state this reduces to
γz = bxy = cy.

Calibration We measure time in days and use information about the spread of COVID-
19 in the United States to calibrate the model. We associate time t = 0 with mid March
2020, the date around which public health authorities considered to impose restrictions.
We assume that at this time, z(0) equalled practically nil.

Following Atkeson (2020) and the sources cited therein we assume that the flow rate
from the infected to the removed population equals c = 1/18, corresponding to an expo-
nentially distributed infection duration that averages 18 days.45

From Russell et al. (2020), Greenstone and Nigam (2020), and the sources cited therein
we infer that the inverse of the infection fatality rate, c/cd, lies in the range [100, 200].

To calibrate y(0) we use data on COVID-19 deaths in mid March 2020 as well as
information about cd and c. The number of deaths on March 16 equalled 23.46 Based on
equation (15) we infer that the initial share of the infected population in mid March, y(0),
equalled 1.8933 · 10−4.47 This compares to a reported case count of 4507, corresponding
to a population share of 1.3745 · 10−5.48

Finally, to calibrate b we rely on information in Ferguson et al. (2020) who argue
that the “basic reproduction number” R0 = b/c for COVID-19 equals approximately 2.4
which implies b = 0.1333. When we simulate the canonical SIR model subject to these
parameter values we find that infections peak after roughly 114.34 days, on 7 July 2020.
We use this date below.

A.1.2 Logistic Model

The law of motion (1) (subject to γ = 0) follows from the canonical SIR model (and
other related models, see the discussion in Gonzalez-Eiras and Niepelt, 2020b) by letting

45Note that
∫∞
0
ce−ctt dt = 1/c.

46See https://github.com/nytimes/covid-19-data/blob/master/us.csv. Regressing the full set
of March data on an exponential trend generates a similar point estimate for March 16.

47We have y(0) · (US population) = (new deaths)/cd = (new deaths)/c · c/cd. We use US population =
328 million, new deaths = 23, and c/cd = 150.

48See https://github.com/nytimes/covid-19-data/blob/master/us.csv. The reported num-
ber corresponds to the cumulative case count but there are very few removed cases at the time.
Common estimates of the extent of underreporting suggest a factor of ten, in line with our results;
see, e.g., https://www.medrxiv.org/content/10.1101/2020.03.14.20036178v2.full.pdf+html or
https://fondazionecerm.it/wp-content/uploads/2020/03/Using-a-delay-adjusted-case-fatality-

ratio-to-estimate-under-reporting-_-CMMID-Repository.pdf or https://www.npr.org/

sections/coronavirus-live-updates/2020/06/25/883520249/cdc-at-least-20-million-americans-

have-had-coronavirus-heres-who-s-at-highest-ri.
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cd = cr = 0 such that z(t) = 0, and by letting b(t) = g(a(t))β. Variable y(t) now has
the interpretation of the stock of persons who underwent infection in the past, not of the
number of currently infected persons. For g(a(t)) = 1 the law of motion (1) (subject to
γ = 0) implies a logistic path for y(t) that converges to ȳ,

y(t) =
ȳ

1 + e−βȳt(ȳ/y(0)− 1)
.

Here, ȳ has the interpretation of 1 − x(∞) where x(∞) denotes the long-run share of
susceptible households in the canonical SIR model who do not contract the disease.

We have the following standard result:

Proposition 6. Consider the law of motion (1) with γ = 0, g(a(t)) = 1, and y(0) < ȳ ≤ 1.
Then, ẏ(t) reaches a maximum at

t = ln

(
ȳ − y(0)

y(0)

)
/(βȳ).

Proof. Solving ÿ(t) = 0 (or y(t) = ȳ − y(t)) for t yields the result.

Calibration Following Hall et al. (2020) who in turn rely on Ferguson et al. (2020) we
assume that 75 percent of the population would contract the disease eventually in the
absence of any mitigation measures, ȳ = 0.75. Moreover, we use proposition 6 to infer
the value of β that corresponds to the b value in the canonical SIR model such that both
models predict peak infections at the same date. That is, we choose β such that the t
value in proposition 6 corresponds to 7 July 2020. Using y(0) = 1.8933·10−4 and ȳ = 0.75,
this yields β = 0.9660 · 10−1.

Figure 8 illustrates the close connection between the predictions of the canonical SIR
model (in blue) and the logistic model (in black). The figure is plotted under the assump-
tion that the parameter values are given by those described above. The long-run share
of households that got infected at some point (represented by the limiting values of the
dashed curves) differs between the canonical SIR model and the logistic model because
we assume that ȳ = 0.75, in line with the literature described above, while the parameter
value for β stipulated by Ferguson et al. (2020) and fed into the SIR model implies a
higher limiting value.49

A.2 Costs of Infection

In this appendix, we discuss the calibration of the parameters representing private and
social costs of infection. Assume that ξ(ai, a) has the functional form

ξ(ai, a) = ζ
ai
a

+ (1− ζ),

49We could trivially make the two limiting values coincide by choosing ȳ appropriately. Subject to the
modified ȳ value, matching the date of peak infections would require to slightly adjust the value of β.
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Figure 8: Dynamics in the canonical SIR model (blue) and in the logistic model (black).
SIR model: x(t) (dotted), y(t) (solid), and z(t) (dashed). Logistic model: x(t) (dotted,
including x̄ = 1− ȳ), ẏ(t) (solid, scaled), and y(t) (dashed).

which satisfies assumption 3 (namely ξ(a, a) = 1 and ξai(ai, a) homogeneous) and there-
fore, in accordance with proposition 1, ξai(a, a) = ξai(1, 1)/a = ζ/a. In words, households
perceive that they bear a share 1− ζ of the social costs of infection independently of their
behavior, and the remaining share ζ proportionally to their choice of activity relative to
the aggregate activity level.50

We calibrate ζ based on U.S. estimates of hospitalization costs and the value of life by
Bartsch et al. (2020) and Hall et al. (2020), respectively. Bartsch et al. (2020) estimate
direct medical costs including follow up expenses (over a year) of $1.25 trillion under the
assumption that eighty percent of the U.S. population are infected. This translates into
conditional per-capita costs of about $4,764 (eighty percent of 328 million persons). Hall
et al. (2020) assess the value of life at $270,000 per year. With an average remaining life
expectancy of 14.5 years every life lost to COVID-19 thus costs $3,915,000. Menachemi
et al. (2020) estimate an infection fatality rate of 0.58 percent implying a conditional
expected cost of dying from COVID-19 of $22,707 per infected individual. Under the
assumption that individuals fully internalize mortality risk but not marginal social medical
costs we conclude that ζ = 22, 707/(22, 707 + 4, 764) ≈ 0.8266.

To calibrate ψ based on the dollar amount $22,707 + $4,764 we use Hall et al.’s
(2020) estimate according to which households would be willing to sacrifice 32 percent of
consumption to eliminate all COVID-19 related mortality risk over one year (neglecting
other costs).51 Let 1 − φ = 0.32 denote this share. In the model the utility cost of

50When g(a) = a (but not when g(a) = a2), ζ − 1 is proportional to the static externality. To see this
recall from proposition 1 that the private marginal costs equal ξai(a, a)ψẏg(y) = ζψẏg(y)/a while the
social marginal costs equal ψdẏg(y)/da = ψnẏg(y)/a. The difference between private and social marginal
costs thus is proportional to ζ − n.

51Hall et al. (2020) stipulate CRRA preferences with a coefficient of relative risk aversion of two and find
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sacrificing the share 1− φ of consumption during N days equals52

N · {(1 + ln(a?)− a?)− (1 + ln(a?φ)− a?)} = −N ln(φ).

Suppose that (almost) all infections occur during N days such that
∫ N

0
ẏ(t)dt ≈ ȳ and

the total (undiscounted) mortality costs amount to ψ̂ȳ. We conclude that

ψ̂ ≈ −N ln(φ)/ȳ.

With N = 365 and ȳ = 0.75 this implies social costs due to mortality risk of ψ̂ ≈ 187.7.
Adding medical costs we arrive at an estimate for ψ of ψ = ψ̂/ζ ≈ 227.1.

Endogenous Costs To analyze the two cases in which the ψ factor entering the costs
of infection (4) is a function of the state (rather than an exogenous constant) we need to
modify the calibration.

In the first case, we replace ψ in (4) by ψfy(t)(ȳ − y(t)) where ψf > 0. As we discuss
in the text this modification captures congestion effects. Using∫ ∞

0

ẏ(t)y(t)(ȳ − y(t))dt =

∫ ȳ

0

y(ȳ − y)dy =
ȳ3

6

and under the maintained assumption that (almost) all infections occur during N days
we conclude that ψ̂f = ψ̂6/ȳ2. Accordingly, we multiply ψ by a factor of 6/ȳ2 ≈ 10.6667
in the modified calibration.

In the second case, we replace ψ in (4) by ψl(`− y(t)/ȳ) where ψl > 0. This modifica-
tion captures learning-by-doing effects. Consistent with recent evidence53 we assume that
the learning effects let unit costs drop by fifty percent over the course of the epidemic:
` = 2. Using ∫ ∞

0

ẏ(t)(2− y(t)/ȳ)dt =

∫ ȳ

0

(2− y/ȳ)dy = 1.5ȳ

and under the maintained assumption that (almost) all infections occur during N days we
conclude that ψ̂l = ψ̂/1.5. Accordingly, we multiply ψ by a factor of 2/3 in the modified
calibration.

B Proofs

B.1 Proof of Lemma 1

Proof. To prove continuity at y = 0, we consider without loss of generality the case of
ν = 0. Consider y0 and y1 with 0 < y0 < y1 ≤ y∞(a?) where y∞(a?) denotes the steady-
state level of y when activity equals a? (see equation (2)). Let C(a?, y) denote the costs

that the willingness to sacrifice consumption equals 28 percent. With logarithmic utility this translates
into 32 percent.

52We neglect time discounting as do Hall et al. (2020). Note that only the benefit of economic activity
(“consumption”) not the cost associated with it (“labor supply”) is reduced by the fraction 1− φ.

53See, for example, Armstrong et al. (2020), Dennis et al. (2020), or The Financial Times
(ig.ft.com/coronavirus-global-data/).
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of infection when activity equals a? and the state is given by (y, t). Define

Ṽ (y0, t0) =

∫ t(y0,y1)

0

e−ρ τu(a?)dτ −
∫ y1

y0

e−ρ t(y0,y)C(a?, y)dy+ e−ρ t(y0,y1)V (y1, t0 + t(y0, y1)).

Recall that t(y0, y) denotes the time span over which the state variable moves from y0

to y. Ṽ (y0, t0) represents the value at time t0 conditional on y = y0 when activity is
fixed at level a? until y = y1 is reached, from which point on activity is chosen optimally.
By construction, Ṽ (y0, t0) constitutes a lower bound for V (y0, t0) such that Ṽ (y0, t0) ≤
V (y0, t0) ≤ U?. Note that C(a?, y) is bounded for y ∈ [0, ȳ]. Also, from equation (1),
limy↓0 C(a?, y) = 0. Finally, from equation (3), limy0↓0 t(y0, y) = ∞. It follows that
limy0↓0 Ṽ (y0, t0) = U? and therefore limy0↓0 V (y0, t0) = U?.

B.2 Proof of Lemma 2

Proof. From the government’s HJB equation, the envelope condition reads

(ρ+ ν)V ′(y) = −g(a(y))β [(ȳ − 2y)(ψ − V ′(y))− y(ȳ − y)V ′′(y)]− γ (V ′(y) + yV ′′(y)) .

Let ŷ denote a point where V reaches a local minimum or maximum. Evaluated at ŷ the
envelope condition reduces to

g(a(ŷ))β(ȳ − 2ŷ)ψ = [g(a(ŷ))β(ȳ − ŷ)− γ] ŷV ′′(ŷ). (16)

To see that V has a unique minimum suppose to the contrary that there exist multiple
local minima. Consider two neighboring minima at, say, ya and yc with ya < yc. Then
there must exist a local maximum at some yb with ya < yb < yc. Note that V ′′(ya) > 0,
V ′′(yb) < 0, and V ′′(yc) > 0. This requires at least two inflection points between ya, yb,
and yc at which V ′′(y) and thus the right-hand side of equation (16) equals zero. Since
the left-hand side of the equation has at most one zero we have arrived at a contradiction
which proves that V has a unique minimum, ymin.

To see that ymin ≤ ȳ/2 suppose to the contrary that ymin > ȳ/2. Since the minimum
is unique we have V ′(ȳ/2) < 0. From the envelope condition,

(ρ+ ν + γ)V ′(ȳ/2) =
(
g(a(ȳ/2))β(ȳ/2)2 − γ(ȳ/2)

)
V ′′(ȳ/2)

and thus, since g(a)βȳ > 2γ (from assumption 1), V ′′(ȳ/2) < 0. Since the minimum lies
to the right of ȳ/2 there must exist an inflection point, say yi, with ȳ/2 < yi < ymin,
V ′(yi) < 0, and V ′′(yi) = 0. But evaluated at yi the envelope condition implies

(ρ+ ν + γ)V ′(yi)︸ ︷︷ ︸
<0

= − g(a(yi))β︸ ︷︷ ︸
>0

(ȳ − 2yi)︸ ︷︷ ︸
<0

(ψ − V ′(yi))︸ ︷︷ ︸
>0

,

which yields a contradiction. We conclude that ymin ≤ ȳ/2.
From equation (16), when γ = 0, V ′′(ymin) = (ȳ − 2ymin)ψ/ymin/(ȳ − ymin) which is

strictly decreasing in ymin. This proves the last claim.
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B.3 Proof of Proposition 1

Proof. From assumption 3, ξai(ai, a) is homogenous of degree m say. Accordingly, ξ(ai, a)
is homogeneous of degree m + 1. Since ξ(λa, λa) = 1 for all λ 6= 0, m equals −1:
ξai(a, a) = λξai(λa, λa). Letting λ = 1/a implies ξai(a, a) = ξai(1, 1)/a ≡ ζ/a and
yields the first result. The derivations also imply that ζ − n is proportional to the static
externality, establishing the second result.

B.4 Proof of Proposition 2

Proof. The result follows directly from equation (9) in proposition 1.

B.5 Proof of Proposition 3

Proof. Part i. follows because the value function is decreasing in a neighborhood of y = 0
(from lemma 1), implying that the static and dynamic externalities both are negative
such that the government imposes a lockdown. Part ii. follows from the fact that Vy(y, t)
eventually is positive. For “small” 1− ζ/n the total externality therefore eventually turns
positive. As a consequence, the government imposes an inverse lockdown if and when the
economy reaches the relevant part of the state space (requiring the condition on γ). If V
is locally convex then the total externality switches signs at yc, establishing part iii.

B.6 Proof of Proposition 4

Proof. Uniqueness of equilibrium follows by construction. Differentiating the equilibrium
solution with respect to γ implies that in a neighborhood of γ = 0 (and a∞ = 1),
da∞/dγ|γ=0 = −ψȳζ. For the government’s solution, equation (10) implies da∞/dγ|γ=0 =
−ψ(ρ + ν)ȳ/(ρ + ν + βȳ). With γ = 0 the two steady-state values are identical. We
conclude that for small values of γ the government chooses a higher steady-state activity
level (and, from equation (1), a higher y∞) than in decentralized equilibrium if

(ρ+ ν)(1− ζ) < ζβȳ.

Consider next the derivative da/dγ under the optimal policy. Note that for any y we
have

(ρ+ ν)V (y) = ln(a(y)) + 1− a(y){1 + βy(ȳ − y)(ψ − V ′(y))} − γyV ′(y) + νU?

= ln(a(y))− γyV ′(y) + νU? = ln(a(y))− γyV ′(y).

Differentiating the equation with respect to γ yields

(ρ+ ν)
dV (y)

dγ
=

1

a(y)

da(y)

dγ
− yV ′(y)− γydV

′(y)

dγ
< 0,

where the inequality follows from the fact that higher re-infection risk must reduce the
government’s value for any y > 0. Since V ′(ymin) = 0 we have

1

a(ymin)

da(ymin)

dγ
− γymindV

′(ymin)

dγ
< 0.
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Using the expression for the government’s optimal choice, equation (7), this implies

a(ymin)βymin(ȳ − ymin)
dV ′(ymin)

dγ
− γymindV

′(ymin)

dγ
< 0.

We conclude that dV ′(ymin)/dγ < 0 and, since a(ymin) depends positively on V ′(ymin) (see
equation (7)), also da(ymin)/dγ < 0 as long as γ < a(ymin)β(ȳ − ymin).

To establish that the latter inequality is indeed satisfied note that assumption 1 and
g(a) = a imply a(ymin)βȳ > 2γ, or, using the expression for the government’s choice,

βȳ

1 + βymin(ȳ − ymin)(ψ − V ′(ymin))
=

βȳ

1 + βymin(ȳ − ymin)ψ
> 2γ.

From lemma 2, ymin ≤ ȳ/2 such that the left-hand side of the preceding inequality is
bounded below by

βȳ

1 + β(ȳ/2)(ȳ − (ȳ/2))ψ
=

βȳ

1 + βȳ2/4ψ
.

The result therefore follows under the additional, imposed, parameter restriction

βȳ

1 + βȳ2/4ψ
> 2γ or

2βȳ

4 + βȳ2ψ
> γ.

B.7 Proof of Proposition 5

Proof. Differentiating the first-order condition, Ha(a(t), y(t), t) = 0, with respect to time
implies

ȧ(t)
d

d a(t)

u′(a(t))

g′(a(t))
= β(ȳ − 2y(t))ẏ(t) (ψ − µ(t))− βy(t)(ȳ − y(t))µ̇(t).

The right-hand side of this condition collapses to zero when we substitute for ẏ(t) from
the law of motion and for µ̇(t) from the condition Hy(a(t), y(t), t) = −µ̇(t). We conclude
that ȧ(t) = 0.

Using the functional form assumptions, an optimal allocation thus is characterized by
the following two equations in two unknowns, a and yT ≡ y(T ):

a =
1

1 + βyT (ȳ − yT )ψ
, (17)

yT =
ȳ

1 + e−aβȳT
(

ȳ
y(0)
− 1
) . (18)

Equation (17) represents the government’s first-order condition at time T ; it uses the fact
that µ(T ) = 0. Equation (18) follows from the law of motion, see equation (2). Both
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conditions can be represented as functions in (yT , a) space. Specifically, let a(yT ) denote
the right-hand side of equation (17) and let

A(yT ) ≡ 1

βȳT
ln

(
ȳ
y0
− 1

ȳ
yT
− 1

)

denote the value of a that solves equation (18). A candidate optimal allocation (a�, y�T )
satisfies a� = a(y�T ) = A(y�T ).

Note that in the relevant range, function a(yT ) is U-shaped; strictly positive; symmet-
ric around yt = ȳ/2; and satisfies a(0) = 1 = a(ȳ). Function A(yT ) is strictly increasing;
satisfies A(y0) = 0; limyT→ȳ A(yT ) = ∞; and an increase in T proportionally reduces
A(yT ) for any given yT . This implies the following: (i) For small T , there exists a unique
candidate optimal allocation (a, yT ) with a(yT ) = A(yT ) and yT ≈ y0. (ii) For T → ∞,
there exists a unique candidate optimal allocation (a, yT ) with a(yT ) = A(yT ) and yT ≈ ȳ.

Let

â ≡ 1

1 + βȳ2ψ/4
< 1, T̂ ≡ ln(ȳ/y(0)− 1)

âβȳ
<∞,

and suppose that y0 is sufficiently small, namely y0 satisfies both y0 < ȳ/2 and

1 +
(

ȳ
y(0)
− 1
) â−1

â

1−
(

ȳ
y(0)
− 1
) â−1

â

ln

(
ȳ

y(0)
− 1

)
> − âβψȳ2/2

1 + ln(â)− â
. (19)

Starting from T ≈ 0 and thus, yT ≈ y0, consider a continuous increase in T . This scales
the A(yT ) schedule down such that the intersection of the a(yT ) and A(yT ) schedules
shifts to the right and down in (yT , a) space. When T reaches T̂ , the intersection reaches
the point (yT , a) = (ȳ/2, â). The welfare generated under the policy a = â given T = T̂
equals 1 + ln(â) − â − ψȳ/2. In contrast, welfare under the policy a = a? given T = T̂
equals

(1 + ln(a?)− a?)T̂ − ψ ȳ

1 + e−βȳT̂
(

ȳ
y(0)
− 1
) = −ψ ȳ

1 +
(

ȳ
y(0)
− 1
)1− 1

â

.

Under condition (19), this last term strictly exceeds (1+ln(â)− â)T̂ −ψȳ/2. Accordingly,
a = â is suboptimal when T = T̂ ; in other words, when T = T̂ there exists an activity
level a 6= â which also solves the equation system (17)–(18) and dominates the choice
a = â.

We have established that the system (17)–(18) has a unique solution for T ≈ 0, the
lowest solution of the system (17)–(18). We have also established that the system (17)–
(18) has multiple solutions for T = T̂ and that the optimal solution is not that lowest
solution. It follows that there exists some T � < T̂ at which the optimal solution ceases to
be the lowest solution. Since the lowest solution and the optimal solution are different, a
is dis-continuous at T = T �.
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C Additional Figures
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Figure 9: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with quadratic effect of activity on infections (right
panels).
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Figure 10: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with stronger curvature of u (right panels).
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Figure 11: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with higher costs of infection (right panels).
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Figure 12: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with congestion effects (right panels).
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Figure 13: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with learning effects (right panels).
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Figure 14: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with a higher arrival rate of a cure (right panels).
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Figure 15: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with stochastic reduction in β (right panels).
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Figure 16: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with multiple waves (right panels).
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Figure 17: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with constraints on policy instruments (right
panels).
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Figure 18: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with observable infection status (public informa-
tion, right panels).
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Figure 19: Activity level in the government’s program (solid) and in equilibrium (dashed):
Baseline model (left panels) and model with observable infection status (private informa-
tion, right panels).
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