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Abstract

Factor modelling extracts common information from a high-dimensional data set into few

common components, where the latent factors usually explain a large share of data variation.

Exploratory factor estimation induces sparsity into the loading matrix to associate units or

series with those factors most strongly associated with them, eventually determining factor

interpretation. We motivate geometrically under which circumstances it may be necessary

to consider the existence of multiple sparse factor loading matrices with similar degrees of

sparsity for a given data set. We propose two MCMC approaches for Bayesian inference

and corresponding post-processing algorithms to uncover multiple sparse representations of

the factor loadings matrix. We investigate both approaches in a simulation study. Applied

to data on country-specific gross domestic product and U.S. price components series, we

retrieve multiple sparse factor representations for each data set. Both approaches prove

useful to discriminate between pervasive and weaker factors.
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1 Introduction

We deal with condensing and extracting common information from high-dimensional data,
using a factor model

yt
N×1

= Λft
(N×K)(K×1)

+ ϵt
N×1

where nowadays typicallyK << N , and a considerable share of data variation is explained
by these latent factors or the common component Λft,

Σy = ΛΣfΛ
′ + Σϵ (1)

with Σy = E(yty
′
t), Σf = E(ftf

′
t) and Σϵ diagonal. Factor identification, ultimately

determining factor interpretation, has been approached by setting over- or rotational
identification restrictions before estimation (Geweke and Zhou, 1996; Aguilar and West,
2000; Bernanke et al., 2005), typically on the loading matrix. Also interested in identify-
ing factors, we will explore two ways of proceeding, which do not call for over-identifying
restrictions. The first one extracts factors under a generic or just-identified specification
(Λ unrestricted, Σf = IK) and rotates ex-post towards a factor identifying specification
(Aßmann et al., 2016; Chan et al., 2018; Aßmann et al., 2023). The second one induces
or estimates an association of units or data series with those factors most strongly deter-
mining them (West, 2003; Lucas et al., 2006; Kaufmann and Schumacher, 2019). Under
both approaches we seek to determine a sparse factor loading matrix, where the non-
zero loadings ultimately yield a factor interpretation. The interesting issue arising here
is whether the induced or estimated sparse structure is unique or whether there may be
multiple sparse factor loading matrices, i.e. factor representations, where each explains
approximately the same share of data variation and results in potentially different factor
interpretations.

Generally, identification conditions developed in the literature do not rule out local non-
uniqueness, i.e. multiple sparse loading matrices that represent different sparse factor
models, fitting a given data set potentially similarly well. We motivate geometrically
when different sparse loading matrices may arise and lead potentially to different inter-
pretations of underlying factors. We contribute in various dimensions to exploratory,
data-driven factor analysis. Both procedures we explore estimate factor models based
on order-invariant, just-identified Bayesian posterior inference. Local or rotational iden-
tification is obtained by processing the posterior output with algorithms closely related
to machine learning procedures, potntially uncovering multiple sparse structures in Λ.
Applications to large panels of country-specific gross domestic product (GDP) and U.S.
price components reveal that multiple sparse structures can be uncovered when weak fac-
tors underly data variation, a feature discussed in psychometrics (Briggs and MacCallum,
2003) as well as in the econometrics literature, see Freyaldenhoven (2022) and references
therein.

In Section 2 we present the model specification and introduce a geometric interpretation
of factor models. We motivate why multiple sparse representations may arise. Section
3 outlines the Bayesian framework and the two approaches, based on different priors, to
uncover multiple sparse representations. In Section 4, we describe in detail the posterior
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processing algorithms, the first based on optimal rotation and the second on posterior
clustering, sorting out factor draws into typical groups of joint factor draws. In Section
5, an extensive simulation study demonstrates the good properties of both approaches,
based on scenarios also including pervasive factors, that is factors that load on most and
the same units across various sparse representations. Section 6 reports the applications
on U.S. monthly sectoral inflation rates and yearly GDP growth rates of countries listed
in the Penn World Table. For both datasets, we are able to identify multiple sparse
representations. We extract pervasive factors as well as some weaker factors, each identi-
fiable jointly with the pervasive ones, but too weak to be jointly identifiable all together.
Section 7 concludes. Appendices A, B and C contain details about posterior derivations,
posterior processing, and the simulation study, respectively.

2 (Non-)Unique sparse factor representation

2.1 Specification

Consider a vector of observable data Y = (y′1, . . . , y
′
T )

′. Each yt, t = 1, . . . , T , denotes an
N × 1 vector of variables yit, i, . . . , N , and can be represented as

yt = Λft + ϵt, ϵt ∼ i.i.d. N (0,Σϵ) (2)

E (ftf
′
t) = IK , Σϵ diagonal with elements σ2

i (3)

with K << N and where ft is a K × 1 vector of latent factors, Λ = {λij|i = 1, . . . , N, j =
1, . . . , K} is the N ×K factor loading matrix and ϵt is an N × 1 vector of idiosyncratic
components.1 As common variation is captured by the factor component only, Σϵ is
diagonal and E(ftϵ

′
t) = 0. Although we allow for in the applications, we abstract from a

dynamic representation of factors and idiosyncratic errors, as the variance of components
in (2) can be interpreted in terms of unconditional variances. We assume that first and
second (unconditional) moments are stationary, which means that observed data in (2) is
non-trending.

In (2), underlying factors are usually unobserved, and we rely on observed data variation,
Σy = E(yty

′
t), to extract the common component:

Σy = ΛΛ′ + Σϵ (4)

Finding a solution to (4) does not only mean mathematically solving the system of N(N+
1)/2 independent equations. A valid decomposition requires Σϵ to be positive definite and
Σy−Σϵ positive semi-definite and of lower-rankK (Anderson and Rubin, 1956). Questions
that arise are (1) does a solution exist and is it unique, which concerns global identification;
(2) is Σϵ unique, which concerns local identification, and (3) for an identified solution, how

1We assume without loss of generality an identity covariance matrix for factors, given that correlated

factors f̃t can be de-correlated by using e.g. a Cholesky decomposition of the factor covariance: E
(
f̃tf̃

′
t

)
=

Σf̃ = LL′; L−1Σf̃L
−1′ = IK . When post-multiplying Λ̃ with L, the factor model with correlated factors

is observationally equivalent to system (2): yt = Λ̃LL−1f̃t + ϵt = Λft + ϵt.
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to determine the orientation of the factor basis and factor order, which concerns rotational
or mode identification. In the following, we deal with local and rotational identification.
Although the common components of various sparse representations may account for a
similar share in data variation, solutions may nevertheless lead to differing elements in
Σϵ, which would entail local non-uniqueness. Finding different sparse representations by
orthogonal rotation deals with rotational or mode identification. We do not provide an in-
depth discussion of identification in the present paper. The interested reader may refer to
Kaufmann and Pape (2023), where we summarize the most important results and provide
a geometric approach to identification, including an algorithm to assess the identification
properties of a factor model.

2.2 A geometric interpretation of factor models

To motivate the possibility of multiple sparse factor decompositions, we use the geometric
representation of a factor model, where Σf spans a possibly correlated factor basis2 and
each row λi· in Λ represents weights attached to basis vectors and corresponds to cartesian
coordinates in a K-dimensional space (Lawley and Maxwell, 1971).

For the following exposition it is useful to introduce some geometric and topological
concepts. First, denote as a K-frame a set of K independent column vectors in the RN

with K < N , or, as an N × K matrix with full column rank. The set of all K-frames
in the RN is then denoted as the (real) non-compact Stiefel manifold V (K,N).3 As the
K independent column vectors in a K-frame span the K-dimensional (real) vector space
RK , we may consider its k-dimensional subspaces for k < K. The set of all k-dimensional
linear subspaces of RK is then denoted as the (real) Grassmann manifold Gr(k,K). For
instance, Gr(1, 2) is the set of all lines through the origin in a plane. Eventually, the
set of all orthogonal K × K matrices is denoted as the (real) orthogonal group O(K),
corresponding to an orthogonal factor basis.

For example, Figure 1 plots following loading matrix as coordinates:

Λ =


0.66 0.95

−1.05 −0.73
0.96 −1.37
0.84 0.59

−0.36 0.51

 , Λ̃ =


1.09 0.40

−1.28 0.00
0.00 −1.68
1.02 0.00
0.00 0.63

 (5)

where coordinates for Λ are specified in terms of the graph’s x- and y-axis. We see
that there are two pairs of row vectors in Λ, each located in a 1-dimensional subspace,
W1 ∈ Gr(1, 2) for λ2· and λ4· and W2 ∈ Gr(1, 2) for λ3· and λ5·. Both subspaces span an
orthogonal factor basis W1 ⊥ W2, indicated with blue lines. The sparse loadings matrix
Λ̃ corresponds to the rotated factor basis. The example also illustrates the importance of
choosing units when setting pre-defined identification restrictions onto the factor loading

2In (4), Σf = IK corresponds to an orthonormal factor basis.
3Note that the Stiefel manifold is sometimes defined as the set of all orthogonal K-frames in the RN

and sometimes defined as the set of all independent K-frames in the RN . We use the latter - and wider
- concept here.
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Figure 1: Five factor loadings, four of which are located in 1-dimensional subspaces.
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matrix. Choosing either λ2· and λ4· or λ3· and λ5· as leading units in Λ combined with
identification restrictions such as lower diagonal or diagonal would fail to identify either
second factor. This motivates to base inference on order-invariant estimation and identify
factors, including their position and sign, by processing the posterior output, as outlined
in the next section.

Figure 2: Two exact sparse representations (left) and two “noisy” sparse representations (right)
in a two-factor model. Rotation based on the Varimax criterion and based on least square
minimization.
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Sometimes, the data may allow for multiple sparse representations. Figure (2) provides
an illustration. Consider the left panel, showing a model with K = 2 factors. It turns out
that we can define multiple sparse representations of Λ. Each combination of two of the
blue lines Wki , ki = 1, . . . , 4, may be selected to span a factor basis, Wki ∈ Gr(1, 2). Two
combinations define an orthogonal factor basis, say W1 ⊥ W2, and W3 ⊥ W4, such that
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either λi· ∈ W1 and λi· ∈ W2 for a first subset of sparse loadings, or λj· ∈ W3 and λj· ∈ W4

for a second subset of loadings. We additionally show the solutions of rotations based on
the Varimax criterion and least square minimization as green and red lines, respectively.
Both fail to find any of the two sparse representations. Instead, they result in slightly
different orthogonal factor bases spanned in between the sparse representations.

A more realistic scenario is one of only approximate sparse structures representing the
data. Such structures may be attributable to measurement errors and an unrestricted
estimation may infer all factor loadings different from zero. However, multiple represen-
tations may underly data where a number of factor loadings may be large and non-zero
and the remaining ones may be small and close to zero. The right panel of Figure 2
gives an illustration of such a “noisy” bimodal representation. Loading vectors that were
previously part of the zero space W{} are now located near the origin, but not exactly
at the origin, whereas the loading vectors that previously fell into the one-dimensional
subspaces Wki are now located near them. An approach designed to discover a sparse
representation may end up with either set of orthogonal factors plotted in blue in the
picture. As in the left panel of Figure 2, we show the result of a Varimax optimization
and least squares minimization, which again span a factor basis lying in-between the bases
spanning a sparse representation.

In practical applications, this scenario may be relevant in particular for data driven by
pervasive factors with nonzero loadings on almost all variables, but also including local
or group-specific factors, which load only on specific subsets of variables. Each mode or
sparse representation would relate to a different set of weak factors, determining poten-
tially different interpretations of weak factors. With many factor loadings at or practically
at zero, Figure 2 may hence be understood as representing two pairs of weak or local fac-
tors.

3 Bayesian inference

As motivated in the previous subsection, multiple modes or sparse representations may
arise in exploratory sparse factor analysis where informed by the data, elements of Λ
are set endogenously to zero. We propose two Bayesian approaches, based on different
priors, to obtain a posterior inference of the model. In view of the discussion in Sub-
section 2.2, where we illustrated the difficulty of selecting proper factor founder series
on which to pre-impose rotational identification restrictions, both approaches are based
on order-invariant, unconstrained Markov chain Monte Carlo (MCMC) samplers. Factor
identification, including factor order and sign, then is obtained by processing the posterior
MCMC output.

The approaches differ in terms of their computational involvement at each stage of pos-
terior inference, either when sampling or post-processing. The first approach based on a
normal prior for factor loadings and an unconstrained rotation sampler - see Aßmann et al.
(2016), or Aßmann et al. (2023) for static factor settings with strictly orthogonal factors
- needs a careful design of a posterior optimization algorithm to find multiple sparse rep-
resentations of the factor loading matrix of (nearly) equal sparsity degree. The second
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approach builds on the spike and slab prior (Mitchell and Beauchamp, 1988; George and
McCulloch, 1997; West, 2003) and uses a sparse permutation sampler to obtain a sample
from the multimodal posterior distribution (Kaufmann and Schumacher, 2019). Although
the sparse prior induces sparsity into the factor loading matrix, upon convergence to a
mode the sampler looses entropy, making it very unlikely to visit other modes or sparse
representations. This is a general issue with spike and slab priors that has been discussed
in machine learning e.g. by Titsias and Lázaro-Gredilla (2011) and Bengio et al. (2013).
To circumvent the issue, we disturb the sampler after convergence by multiple random
rotations and run multiple chains in parallel to detect different sparse modes.

3.1 Bayesian specification

The first building block of the Bayesian framework includes the specification of prior
distributions, where in both approaches the prior specification for factor loadings is a
standard one used in Bayesian (sparse) factor analysis. The first approach performs
posterior inference based on an unconstrained normal prior distribution for the factor
loadings

π (λij) = N(0, τ0) (6)

The second approach induces a sparse Λ by working with a hierarchical spike and slab
prior.

π(λij|βij, τj) = (1− βij)δ0(λij) + βijN(0, τj) (7)

π(βij|ρj) = (1− ρj)δ0(βij) + ρjB(ab, a(1− b)) (8)

π(ρj) = B(r0s0, r0(1− s0)) (9)

where δ0 represents the Dirac Delta function assigning all probability mass to zero and
B(uv, u(1− v)) is the beta distribution with mean v and precision u. For τj, we assume
an inverse Gamma prior distribution IG(g0, G0). Note that both prior specifications
are invariant with respect to factor and sign permutation, and the normal prior is also
invariant with respect to factor rotation. This allows us to explore the unconstrained
posterior distribution.

We introduce the following notation to lay out compactly the second building block, the
likelihood, and the posterior inference. We stack all observations of variables yt into
y = (y′1, . . . , y

′
T )

′ and all observations of unobserved factors into f = (f ′
1, . . . , f

′
T )

′. Model
parameters and hyperparameters are gathered in θ = {Λ,Σϵ, ϑ}, where ϑ collects all hyper-
parameters of the hierarchical prior (7)-(9), ϑ = {βij, ρj, τj|i = 1, . . . , N, j = 1, . . . , K}.

The complete data likelihood factorizes as

L(y|f , θ) =
T∏
t=1

π(yt|ft, θ) (10)

with normal observation density

π(yt|ft, θ) =
1√

2π|Σϵ|1/2
exp

{
−1

2
(yt − Λft)

′ Σ−1
ϵ (yt − Λft)

}
7



To complete the prior specification, we assume a normal prior distribution for factors
π (f) = N (0,F0), F0 = IKT .

3.2 Posterior inference

Although the joint posterior distribution

π (f , θ|y) = L(y|f , θ)π (θ|ϑ) π (ϑ) (11)

is not available in closed form, we can derive full conditional distributions and rely on
a Gibbs sampling scheme. To obtain draws from the posterior distribution, we sample
repeatedly from

1. π (Λ|y,f ,Σϵ). Both the normal and the sparse prior are conditionally conjugate.
Therefore, the posterior distributions will also be, respectively, normal and sparse.
Under the sparse prior, we additionally update the hyperparameters and draw from
π (ϑ|Λ). See Appendix A for the derivation of posterior moments.

2. π (f |y, θ) = N(f,F) with moments

F =
(
Λ′ (IT ⊗ Σ−1

ϵ

)
Λ+ F−1

0

)−1
, f = F

(
Λ′ (IT ⊗ Σ−1

ϵ

)
y
)

with Λ = IT ⊗ Λ.

To explore the full unconstrained posterior distribution, depending on the sampler each
iteration is terminated by either random rotation or random permutation: Step 3. of,
respectively, the unconstrained rotation or the sparse permutation sampler consists in

3.U. (Unconstrained rotation) Random rotation of the factor loadings and factors:
The output of the unconstrained rotation sampler will display substantial autocor-
relation with respect to its orientation. Mixing can be increased using an orthogonal
matrix D ∈ RK×K , which is drawn such that it is distributed with Haar measure,
i.e., uniformly on the K-dimensional hypersphere.4 The factors and factor-specific
parameters are then transformed as

f := (IT ⊗D)f

Λ := ΛD′ (12)

Since the sampler is unconstrained, the entire posterior distribution is explored even
if this step is omitted. In more complex setups, however, several hundred thousands
iterations may be required to achieve this.

4To obtain the desired matrix D, the approach proposed by Mezzadri (2007) is used, sampling
a matrix M ∈ RK×K with independent entries from a uniform distribution and applying the QR
decomposition as M = QR′. Then the desired orthogonal matrix obtains as D = QS, where
S = diag(sgn(r1,1), . . . , sgn(rK,K)).
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3.S. (Sparse permutation) Random permutation of factor position and sign: First,
randomly draw a permutation ϱ = (ϱ1, . . . , ϱK) of {1, . . . K} and apply it to factors,
factor loadings and hyperparameters

f := ϱ(f) =
{
fϱjt|j = 1, . . . , K, t = 1, . . . , T

}
{Λ, ϑ} := ϱ (Λ, ϑ) =

{
λiϱj , βiϱj , ρϱj , τϱj |i = 1, . . . , N, j = 1, . . . , K

}
(13)

Second, draw K independent Rademacher distributed random variables. If the kth

variable takes the value −1, the kth factor and corresponding loadings incur a sign
switch. By implementing this step, the output of the sparse permutation sampler
will display 2KK! modes.

The unconstrained rotation sampler explores the unconstrained posterior distribution,
and generally one MCMC chain or shorter parallel chains are run to obtain a sample from
the posterior distribution. As mentioned earlier, the sparse permutation sampler may
converge to a sparse representation and stay there, making it difficult for the sampler to
visit other sparse representations. To enforce the sampler to visit additional potential
sparse representations, we proceed as follows:

1. Simulate a first chain:
Initialize the sampler, retain M1 draws from the posterior after convergence.

2. Disturb and simulate R− 1 chains in parallel:
Initialize R − 1 parallel MCMC chains, each by a random orthonormal rotation of
a factor loading draw of the first chain, Λ(0),r = Λ(m)D(r), m ∈ {1, . . . ,M1}. Retain
Mr values after convergence.

3. Collect all M =
R∑

r=1

Mr posterior draws.

4 Posterior processing: Multiple mode identification

Next, we describe the mode identification techniques using the output of the uncon-
strained rotation and sparse permutation sampler, based on the geometric representation
motivated in Section 2.2.

4.1 Mode identification using the output of the unconstrained
rotation sampler

To obtain a sample from the posterior distribution of Λ we first post-process the uncon-
strained sampler’s output with the weighted orthogonal Procrustes (WOP) procedure to
orient all draws towards a common factor basis, see Aßmann et al. (2016). The posterior
distribution is identified up to a final orthogonal transformation by an arbitrary orthogonal
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matrix H∗. When appropriately chosen, a rotation H∗ can uncover a sparse representa-
tion of Λ. Highest posterior density (HPD) K-dimensional hyperellipsoids, constructed
for each 1×K row of factor loadings λi· in Λ, provide the basis for the optimization. The
target will be to orient the factor basis such that subspaces spanned by as few factor basis
axes as possible will intersect with each of the hyperellipsoids.

All parameters characterising the K-dimensional HPD hyperellipsoid for λi· can be in-
ferred from the posterior sample:

center ci ∈ RK , ci = 1/M
M∑

m=1

λ
(m)
i·

′

rotation (in matrix form) Hi ∈ O(K),

rotation (in angle form) γi ∈ RP ,where P =

(
K

2

)
radii/half-diameters ri ∈ RK

To obtain Hi, we first compute an estimate of the covariance matrix of λi·, which is

Ψi = 1/M
M∑

m=1

λ
(m)
i·

′
λ
(m)
i· − cic

′
i. The spectral decomposition Ψi = HiWiH

′
i yields Hi, an

orthogonal matrix, andWi, a diagonal matrix with eigenvalues w1, . . . , wK on the diagonal.
The Givens decomposition of Hi yields the Givens rotation angles γi = (γi,1, . . . , γi,P )

′,
where P is the number of axis pairs involved.5 To obtain ri = (ri,1, . . . , ri,K)

′, we work with

demeaned and decorrelated draws. We demean the draws λ
(m)
i· to obtain λ

(m),dem
i· = λ

(m)
i· −

c′i. Next, we decorrelate the demeaned draws to obtain λ
(m),dec
i· = λ

(m),dem
i· Hi. Finally, we

standardize the demeaned and decorrelated draws to obtain λ
(m),stand
i· = λ

(m),dem
i· HiW

− 1
2

i .
Denote the empirical 1 − α quantile of ∥λstandi· ∥2 by q1−α, and determine the radii of the
ith hyperellipsoid as ri,k = q1−α

√
wk.

Figure 3 shows how a two-dimensional ellipsoid λi· may be re-constructed by reverting
the steps just described. The first panel in the first row shows the unit circle that consists
of the set of points {xi|x′ixi = 1}. The second panel in the first row shows how the unit
circle is expanded to an ellipse by scaling each of its points along the kth dimension
with radius ri,k, such that the points become Rixi, with Ri = diag(ri,1, ri,2). The third
panel in the first row shows how Hi is used to rotate the ellipse, and the points become
HiRixi. Eventually, as shown in the first panel in the second row, the ellipse is shifted,
translating all of its points as HiRixi + ci. The procedure is generically applicable to
higher-dimensional ellipsoids, see Appendix B.2 for a K = 3-dimensional example.

For general K ∈ N, it holds that any point xi lies inside the ellipsoid associated with λi·
if and only if

∥(xi − ci)
′HiR

−1
i ∥2 < 1, where Ri = diag(ri,1, . . . , ri,K). (14)

To identify a sparse representation, we now have to find a rotation matrix H∗, such that
as many ellipsoids as possible would intersect with low-dimensional subspaces of the space

5The Givens decomposition of a matrix H is described in Appendix B.1.
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Figure 3: 95% highest posterior density ellipsoid for K = 2, built from the unit circle (first
row, first panel), which is first expanded (first row, second panel), then rotated (first row, third
panel), and eventually translated (second row, first panel). A possible rotation of the coordinate
system is shown in the second panel of the second row. The third panel of the second row shows
a different hyperellipsoid, which intersects with both axes after rotating the coordinate system.
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spanned by H∗. Consider the second panel in the second row of Figure 3, which shows how
a rotation of the coordinate axes to the right results in an intersection of the hyperellipsoid
with the new second coordinate axis. Both axes are one-dimensional subspaces of the R2,
and the intersection implies that a nonzero loading is only required for the second factor
here, whereas the loading on the first factor can be set to zero.

We introduce an indicator matrix ∆ to describe the sparse pattern in Λ, a matrix indi-
cating non-zero coordinates of the subspaces that ellipsoid i intersects with, i.e. δi,k = 1
if λi,k ̸= 0, and zero otherwise. Note that if the origin is located within the ith hyperellip-
soid, the hyperellipsoid intersects with the zero-dimensional space, and hence, all loadings
on variable i can be set to zero. That is, δi,k = 0 for all k ∈ {1, . . . , K}. This continues
to hold for arbitrary rotations H∗ of the coordinate system. Accordingly, if the ith hyper-
ellipsoid intersects with the kth axis only, loadings on variable i can be set to zero for all
factors except the kth one, i.e., δi,k = 1 and δi,j = 0 for all j ∈ {1, . . . , k−1, k+1, . . . , K}.

The ith hyperellipsoid intersects with a subspace of the rotated space if and only if there
exists at least one point xi from that subspace which is located within the hyperellipsoid,
i.e., that satisfies the inequality in Equation (14). A natural candidate for xi is the point
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within the subspace at the minimal Mahalanobis distance to the hyperellipsoid’s center
ci. We represent xi by xi = H∗(S(ki,ji)s(ki,ji),i), where S(ki,ji) is a K ×K matrix including
the standard vectors spanning the ji

th subspace of dimension ki, with 0 ≤ ki ≤ K and

ji ∈
{
1, . . . ,

(
K

ki

)}
, and s(ki,ji),i is a K × 1 vector of scaling factors. For instance,

for K = 3, the matrix that spans the first subspace of dimension ki = 2 corresponds to

S(2,1) =

1 0 0
0 1 0
0 0 0

, withHS(2,ji) ∈ Gr(2, 3) for arbitrary orthogonal matricesH ∈ O(3).6

There are two dimensions with unique subspaces, namely the zero space, spanned by S(0,1),
and the RK , spanned by S(K,1) = IK . To ensure that the point xi does not fall into a
subspace of lower dimension than S(ki,ji), we require that each element h of s(ki,ji) that
scales the hth diagonal element of S(ki,ji) is non-zero if the corresponding diagonal element
is equal to 1, i.e., s(ki,ji)h ̸= 0 for every h ∈ {1, . . . , K} with S(ki,ji),h,h = 1. This implies
that every dimension contained in the subspace spanned by S(ki,ji) has a non-zero scaling
factor.7 Accordingly, xi = H∗(S(ki,ji)s(ki,ji)) is a point located in the rotated subspace
spanned by S(ki,ji), but not within any rotated lower-dimensional subspace.

Conditional on a rotation H∗ and S(ki,ji), we determine an optimal s(ki,ji),i, minimizing

ℓki,ji,i(S(ki,ji), s(ki,ji),i, H∗) = ∥(H∗(S(ki,ji)s(ki,ji),i)− ci)
′HiR

−1
i ∥2,

which corresponds to the expression in Equation (14). Eventually, if the inequality in
Equation (14) holds for xi = H∗(S(ki,ji)s(ki,ji),i), the i

th hyperellipsoid intersects with the
rotated subspace spanned by S(ki,ji). In that case, δi· corresponds to the diagonal elements
of S(ki,ji), δi· = diag(S(ki,ji)). For instance, for K = 3, we may find a rotation H∗ such

that there exists a nonzero vector s(2,1) for S(2,1) =

1 0 0
0 1 0
0 0 0

, so that the inequality in

Equation (14) holds for xi = H∗
(
S(2,1)s(2,1),i

)
, i.e., the ith hyperellipsoid intersects with

the rotated first two-dimensional subspace of the R3. Then we have δi,· =
(
1 1 0

)
.

The task is now to find the optimal rotation matrix H∗ for the entire coordinate system
such that for each i, the point xi = H∗

(
S(ki,ji)s(ki,ji),i

)
in the rotated subspace spanned by

S(ki,ji) falls inside the ith hyperellipsoid, with ki as small as possible and optimal scaling
vector s(ki,ji),i. When checking for sparsity under some rotation H∗, we therefore start
with low-dimensional subspaces, i.e., k = 1, . . . , K − 1.

For example, consider the eight hyperellipsoids shown in the first panel of Figure 4.
A rotation of the axes to the right by 35 degrees results in an intersection with the
rotated axes for five of the hyperellipsoids. This is shown in the second panel, with the
intersecting hyperellipsoids highlighted in yellow. A rotation of the axes to the left by
12 degrees results in an intersection with the rotated axes for the remaining three of the

6Note that for 2 ≤ k ≤ K − 1, this representation is redundant insofar as changes in H can accommo-
date for a different choice of S(ki,ji), however, as we consider multiple row vectors in our loading matrices,
it is vital to distinguish between subspaces of equal dimension, as the orthogonal matrix H rotates each
row vector towards one of these subspaces, albeit not necessarily the same subspace.

7For simplicity, we may also require that all s(ki,ji),h ̸= 0, since a scaling factor applied to a zero
element of S(ki,ji) has no effect anyway.
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Figure 4: 95% highest posterior density ellipsoids for eight row vectors λi· with K = 2 (first
panel), first proposed axis rotation (second panel), and second proposed axis rotation (third
panel).
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Hyperellipsoids, rotation choice 2
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hyperellipsoids. This is shown in the third panel, with the intersecting hyperellipsoids
again highlighted in yellow. Note that since the axes are one-dimensional subspaces of
the R2, intersections of hyperellipsoids with an axis imply that a nonzero loading is only
required for the factor corresponding to this axis. The first proposed rotation therefore
results in two variables with nonzero loadings on the first factor only, three variables with
nonzero loadings on the second factor only, and three variables with nonzero loadings
on both factors. Accordingly, the second proposed rotation results in two variables with
nonzero loadings on the first factor only, one variable with nonzero loadings on the second
factor only, and five variables with nonzero loadings on both factors. This example also
illustrates that reflections (corresponding to a sign change in factors) and permutations
(change in factor order) do not induce changes in the number of zero or non-zero elements

in each row of ∆. It hence suffices to run an optimization over the

(
K

2

)
rotation angles

required for a Givens decomposition of H∗.

In this context, it must be noted that the lowest-dimensional subspace ki, 0 < ki < K,
intersecting with the ith hyperellipsoid may not be unique. Hence, if the same rotation
H∗ is applied to two distinct subspaces of the same dimension, say S(ki,ji,1) and S(ki,ji,2),
where ji,1 ̸= ji,2, then both xi,1 = H∗(S(ki,ji,1)s(k−i,ji,1),i) and xi,2 = H∗(S(ki,ji,2)s(ki,ji,2),i)
may satisfy the inequality in Equation (14), but xi = H∗(S(li,ji)s(li,ji),i) with S(li,ji) =
S(ki,ji,1)S(ki,ji,2) may not, where S(li,ji), li < ki, spans the li-dimensional subspace that
combines the zero dimensions of both ki-dimensional subspaces S(ki,ji,1) and S(ki,ji,2). The
third panel in the second row of Figure 3 shows the most simple example of this situation.
Under a rotation to the coordinate system by H∗, the ellipse in the R2 overlaps with
both axes, i.e., distinct one-dimensional subspaces, but does not contain the origin, i.e.,
the unique zero-dimensional subspace. This means that either δi,1 = 0 or δi,2 = 0,
but not both. Technically, this constitutes the possibility of multiple different sparse
representations of Λ for the same choice of H∗.

With these topological considerations at hand, we now propose an algorithm in order to
determine ∆. The algorithm proceeds as follows:

13



1. Find all hyperellipsoids containing the origin of the coordinate system, i.e. those
variables i for which ∥∥(0K − ci)

′HiR
−1
i

∥∥
2
< 1 (15)

holds. Set δi,k = 0 for all k ∈ {1, . . . , K}. These hyperellipsoids do not need to be
taken into account in the subsequent optimization.

2. Find the optimal rotation of the coordinate system

Hopt
∗ = argmin

H∗

{
N∑
i=1

ℓ∗i (H∗) + ζ
N∑
i=1

K∑
k=1

δi,k(H∗)

}
, (16)

where

ℓ∗i (H∗) = ℓki,ji,i(S
∗
i (H∗), s

∗
i (H∗), H∗) for every i ∈ {1, . . . , N}, (17)

and the second term in Equation (16) counts the number of nonzero elements in
∆ and scales the result with a penalty term ζ. In simulations and applications,
we used ζ = 10. H∗ is conveniently expressed as a function of the Givens rotation
angles.

In the following, we explain in detail how the expression in Equation (17) is obtained
for each hyperellipsoid and how δi,k(H∗) in Equation (16) is determined in cases not
covered by step 1 of the algorithm.

First, consider the loss function

ℓki,ji,i(S(ki,ji), s(ki,ji),i, H∗) = ∥(H∗(S(ki,ji)s(ki,ji),i)− ci)
′HiR

−1
i ∥2. (18)

(a) For given Ski,ji and H∗, the optimal vector of scaling factors is obtained as

s∗(ki,ji),i(H∗) = arg min
s(ki,ji),i

ℓki,ji,i(S(ki,ji), s(ki,ji),i, H∗). (19)

(b) For given H∗, we attempt to find S(ki,ji)(H∗) for every hyperellipsoid by eval-
uating Equation (18) for the ki-dimensional subspaces of the RK spanned by
S(ki,ji)(H∗), starting with ki = 1. If for some ki ≤ K − 1,

ℓki,ji,i(S(ki,ji)(H∗), s
∗
(ki,ji),i

(H∗), H∗) < 1 (20)

holds, the ith hyperellipsoid intersects with the subspace spanned by S(ki,ji)(H∗)
and rotated by H∗, and we can set δi· = diag(S(ki,ji)(H∗)). Subspaces with
k > ki do not have to be investigated in this case, since if a lower-dimensional
subspace intersects with a hyperellipsoid, then all spaces of higher dimension
containing the lower-dimensional subspace also intersect with the hyperellip-
soid. Conversely, if Equation (20) holds for no S(ki,ji)(H∗) with ki ≤ K − 1, we
set ℓ∗i (H∗) = 0 in Equation 17 and δi· = 1′K .

8

8Note that ℓ∗i (H∗) = 0 implies that ci falls into the RK , which is indeed true. Note further that the
penalty for nonzero loadings in this case is ζK, so the contribution of this hyperellipsoid to the total
value of the loss function in Equation (16) is large.
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If multiple subspaces of equal dimension ki intersect with the hyperellipsoid,
corresponding to the situation depicted in the third panel in the second row
of Figure 3, we may choose among different strategies, such as always select-
ing the subspace for which Equation (20) yields the smallest loss (which is
the approach we choose in the following), or selecting from the candidate sub-
spaces randomly, or selecting a subspace that excludes the axes where we are
particularly interested in having zero loadings for variable i.

(c) If there exists an S(ki,ji)(H∗) satisfying Equation (20), and, in case of nonunique-
ness, has been chosen according to one of the strategies described in (b), we
introduce the shorter notation S∗

i (H∗) = S(ki,ji)(H∗) , and the corresponding
optimal vector of scaling factors from Equation (19) is denoted as s∗i (H∗). This
yields the expression in Equation (17).

Note that due to the aforementioned Givens decomposition, the algorithm may proceed
through the axes in a pairwise fashion, always addressing two dimensions of the hyperel-
lipsoids at a time. The process of finding the optimal overall rotation matrixH∗, described

in step 2 of the algorithm, is thus replaced by P =

(
K

2

)
pairwise optimizations. Each

pairwise optimization is then concerned with one specific pair of axes at a time, implying
K = 2 in step 2 of the algorithm, reducing the number of subspaces to be considered to
merely two.9 A few additional changes are implied accordingly. Denote the axes involved
in one pairwise optimization as k1 and k2. Then the optimization can be simplified by
first finding those hyperellipsoids for which the inequality in Equation (15) holds if only
elements k1 and k2 of the resulting vector on the left-hand side are considered. These
hyperellipsoids do not have to be taken into account in the current pairwise optimization,
as δi,k1 = δi,k2 = 0 already holds, which cannot change as a result of a pairwise rotation.
Furthermore, in step 2 of the algorithm, we replace the initial full rotation matrix H∗
by a Givens rotation matrix around the axes k1 and k2. And eventually, every pairwise
optimization needs to take the outcomes of previous pairwise optimizations into account.
To achieve this, recall our earlier observation that rotating the coordinate system by a
matrix H is equivalent to rotating all hyperellipsoids by its transpose H ′. Say that in
the first pairwise optimization, we determine the optimal rotation between the first two
axes, denoted Hopt

∗(1,2). To incorporate the effect of this first pairwise optimization, the

hyperellipsoids are afterwards rotated by Hopt
∗(1,2)

′
. In the next pairwise optimization, the

optimal rotation between the first and third axes Hopt
∗(1,3), conditional on H

opt
∗(1,2), is deter-

mined. After this pairwise optimization, the hyperellipsoids undergo the corresponding
rotation by Hopt

∗(1,3)
′
, and so forth. Each of the P pairwise optimizations involves a single

angle parameter γp at a time that determines the corresponding Hopt
∗(k1,k2), rather than one

optimization involving P angle parameters at once, and the full optimal rotation matrix
can be rebuilt as

Hopt
∗ =

P∏
p=1

Hopt
∗,p ,

9The null space and the R2 are unaffected by all possible choices for the pairwise rotation here, so
they do not need to be considered, and we only need the two one-dimensional subspaces of the R2.
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where Hopt
∗,p denotes the optimal rotation about the pth pair of axes. Note that to prevent

the algorithm from getting trapped in local optima, the optimizations over the axis pairs
may be performed repeatedly and in random order.

Independently of whether we use a joint or a pairwise optimization, we may want the
algorithm to find more than a single mode. To achieve this, we can adjust the loss
function that determines Hopt

∗ , such that it takes a set H = {Hprev,1
∗ , . . . , Hprev,L

∗ } of L
previously found rotation matrices into account, i.e.,

Hopt
∗ = argmin

H∗

{
N∑
i=1

ℓ∗i (H∗) + ζ

N∑
i=1

K∑
k=1

δi,k(H∗) + ψ

L∑
l=1

∥H ′
∗H

prev,l
∗ − P ∗

s ∥2

}
,

where ψ > 0 is a suitably chosen term to penalize solutions for Hopt
∗ that are too similar

to previous solutions contained in H, and

P ∗
s = argmin

Ps

(
∥H ′

∗H
prev,l
∗ − Ps∥2

)
is the K-dimensional signed permutation matrix with minimal distance to H ′

∗H
prev,l
∗ , in

order to reflect that two different choices for Hopt
∗ may indeed be equivalent, save for

rearranging columns and switching their signs.

4.2 Mode identification using the output of the sparse permu-
tation sampler

As motivated in Subsection 3.2, we run multiple chains of the sparse permutation sampler
to allow the sampler to converge to and stabilize at potentially more than one sparse mode.
Each sparse representation will display 2KK! modes due to the random permutations of
factor positions and signs at the end of each iteration. In the presence of more than
one sparse mode, visual tools like scatter plots or histograms that usually uncover label
and sign switching within a mode may become inappropriate to discriminate between
sparse modes in a first stage, or vice versa. For example, the upper-left scatter plot
in Figure 5 visualizes the unsorted MCMC output for factor loadings of a series, where
the black dots represent all permutations of the true loadings for each sparse modes.10

Although the pattern discriminates well between the two sparse modes, one where both
factor loadings are non-zero and the other where one loading is nearly zero, it is difficult to
find a factor-identifying restrictions in the first mode, as factor loadings are very close to
each other (in absolute terms). The histogram of draws below the scatter plot illustrates
the difficulty in defining mode- and factor-identifying restrictions based on the marginal
density of a specific series’s factor loading only. When the number of factors is larger
or sparse patterns are more complex, it may become difficult to determine a restriction
discriminating between sparse modes in the first stage. The upper-left scatter plot of
factor loadings in Figure 6 visualizes the situation for a simulated factor model with four
factors and two sparse modes. Obviously, there is no way of separating draws into one of
the modes, nor a way of identifying factors.

10See Subsection 5.1 for a description of the simulation settings. We plot the output for the sce-
nario data50ex ln, where loadings of series 39 in the first and second modes are, respectively, λ39,· =
[0.81,−0.72] and λ39,· = [.06,−1.08].
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Figure 5: MCMC output for the scenario K = 2 factors and two sparse modes, data50ex ln
in Table 2. Left panels: Scatter plots and histogram of factor loadings for a selected series;
right panels: Scatter plots and histogram of correlations across draws for the first factor against
correlations across draws for the second factor. Blue and red colors refer to the first and second
identified mode, respectively. The black dots reflect all permutations of true factor loadings
(Panel (a)) and mode-specific true factor loadings (Panel (b)).
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Figure 6: MCMC output for the scenario K = 4 factors with two pervasive factors and two
sparse modes, K4m2 2pf ln in Table 4. Left panels: Scatter plot of factor loadings for the second
series; right panels: Scatter plots of correlations across draws of the first (third) factor against
correlations across draws of the second (fourth) factor. Blue and red colors refer to the first and
second identified mode, respectively.
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However, factor draws from the same posterior distribution will be highly correlated
across each other. We visualize this in the upper right panels of Figures 5 and 6. These
scatter plots suggest that groups of factor draws are well identified based on there cross-
correlations. The right histogram in Figure 5 also shows a distinct group of highly corre-
lated factor draws (the absolute correlation is nearly 1). Therefore, to identify potential
multiple sparse modes and factors within modes we suggest to post-process the MCMC
output based on correlations across factor draws (or correlations across factors and factor
loadings draws). In a first step, we set up an overfitting mixture model for factors (or
factors stacked with loadings), where the number of components G will be a multiple of
the number of factors K. The number of filled components will indicate the number of
distinct factors sampled. Each draw of (distinct) K factors is then assigned to the mode
combining those K factors. The number of filled factor combinations will indicate the
number of sparse modes sampled. Within each mode, we re-order draws and switch sign
accordingly to obtain factor identification.

We proceed in the following way:

1. Classify each factor draw f
(m)
k =

{
f
(m)
kt |t = 1, . . . , T

}
, k = 1, . . . , K, m = 1, . . . ,M

into one of G ≥ K clusters by estimating a mixture model with G components,
where G is set to a multiple of K. The prior mixture probability η is assumed
uniform Dirichlet and is specified in a way to allow for empty groups ex-post, π(η) =
D(e0, . . . , e0), with e0 < G/2 (Rousseau and Mengersen, 2011). Conditional on

the component indicator z
(m)
k ∈ {1, . . . , G}, f (m)

k |z(m)
k = g ∼ N(fg,Fg), where the

mean factor path fg = {fgt|t = 1, . . . , T} of component g is interpreted as factor
representative.

See Appendix B.3 for more details on the sampler.

2. For posterior inference, retain those draws (m) of K factors, for which the associa-
tion to components is unique, and re-order draws in ascending order of components

f (m) =

{
f
(m)

z
(m)
k

|k = 1, . . . , K; z
(m)
1 < · · · < z

(m)
K

}
. Change the sign of those draws

negatively correlated with the factor representative f
(m)

z
(m)
k

:= sign(corr(f
(m)

z
(m)
k

, f
z
(m)
k

))f
(m)

z
(m)
k

.

3. Finally, evaluate how many times (NZ) a factor combination IZ = {Z1, . . . , ZK} ⊂

{1, . . . , G}, Z = 1, . . .

(
G

K

)
has been drawn.

To obtain a sharper distinction between groups, we may stack factor and factor loading

draws in the first step: Classify (f
(m)′
k λ

(m)′
k )′ =

{
f
(m)
kt , λ

(m)
ik |t = 1, . . . , T ; i = 1, . . . , N

}
into

one of G ≥ K clusters by estimating a mixture model with G components.

The sampler usually converges quite quickly. Nevertheless, an increasing dimension of
(f

(m)′
k λ

(m)′
k )′ and the posterior sample M may slow down considerably the clustering al-

gorithm. Therefore, we may apply Step 1. only to a randomly chosen subset of posterior
draws to determine the factor representatives. We then determine component association
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of each draw, z
(m)
k , based on the correlation with factor representatives, z

(m)
k = g such

that |corr(f (m)
k , fg)| = max

c
|corr(f (m)

k , fc)|, c = 1, . . . , G.

The result of post-processing for the two examples is visualized in the bottom panels of
Figures 5 and 6. The right scatter plots of factor correlations confirm that factor draws
are well sorted out into both modes and the clustering allows for factor identification. The
left scatter plots of factor loadings reflect two well identified modes for each setting, too.
For K = 2, the two modes correspond to the ones we discerned from the scatter plot of
the unsorted draws, one where both factor loadings are different from zero and the other
one where one loading is shrunk towards zero. For K = 4, the scatter plot of sorted factor
loadings reveals that the loading structure of two factors (and in fact these two factors)
coincide across both modes, whereas the loading structure of the other two factors differ
across modes. The characteristics plotted for one series carry over to loadings of all other
series. We discuss these and further results in more details in Section 5.

5 Simulation study

We analyze two basic settings: In the first one, the data generating process (DGP) consists
of two factors and two different underlying factor loading structures of about equal sparsity
degree. In the second one, the DGP consists of three or four factors, where one or two
of the factors are so-called pervasive factors. These are present in both underlying factor
loading structures. The remaining factors are local or unit-specific factors with different
loading structures of about equal sparsity degree. For each setting we simulate various
scenarios.

5.1 K = 2 factors, two underlying sparse loading structures

We simulate data driven by two static factors and two underlying loading structures with
overall 50% or 80% sparsity, denoted as data50 or data80, respectively. The subspaces
implied by the two different underlying sparse loading structures are minimally correlated
with each other. Appendix C.1 gives detailed explanations how such minimally correlated
subspaces can be constructed.

For each sparsity degree, we simulate loadings under an exact sparse pattern, denoted
as ex, with exact zero loadings, or an approximate pattern, denoted as ap, with “noisy
zeros”. Factors and idiosyncratic errors in some scenarios satisfy Thurstone’s assumptions
exactly, denoted as thur. The variance of the idiosyncratic errors is either large or low,
resulting in signal-to-noise ratios of approximately 0.8 to 1 in the high-noise scenario and
4 to 5 in the low-noise scenario, where the latter is denoted as ln. These settings yield 16
scenarios from which we simulate N = 40 series of length T = 100 each.

The unconstrained rotation approach from Section 4.1 is applied to sequences of length
200,000 each, and the algorithm attempts to find two distinct modes, applying a penalty to
the first mode when looking for the second mode, as described in step 5 of the algorithm.
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Throughout, the highest posterior density intervals are constructed with α = 0.05. Table
1 displays a comparison of each estimated mode with the closest simulated mode. We
report for each mode the number and the average absolute values of false zeros and
false non-zeros, and the Jaccard and simple matching coefficients between simulated and
estimated modes.11

Table 1: K = 2, unconstrained rotation, α = 0.05: The second column dislays which mode
was found first and second. Absolute true and estimated average are reported for, respectively,
false zeros and non-zeros.

Scenario Ordering False zeros False non-zeros Matching indices
Number Average Number Average Jaccard Simple score

data50ex thur ln 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ex ln 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ap thur ln 1 1 0.12 1 0.10 0.95 0.98
2 0 - 0 - 1.00 1.00

data50ap ln 1 1 0.12 1 0.09 0.95 0.98
2 0 - 0 - 1.00 1.00

data80ex thur ln 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

data80ex ln 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

data80ap thur ln 2 2 0.13 1 0.08 0.91 0.96
1 0 - 0 - 1.00 1.00

data80ap ln 2 1 0.13 6 0.10 0.82 0.91
1 0 - 4 0.11 0.87 0.95

overall average 0.31 0.12 0.81 0.10 0.97 0.99

data50ex thur 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ex 1 0 - 0 - 1.00 1.00
2 0 - 0 - 1.00 1.00

data50ap thur 1 1 0.12 0 - 0.98 0.99
2 1 0.13 0 - 0.98 0.99

data50ap 1 1 0.12 0 - 0.98 0.99
2 1 0.13 0 - 0.98 0.99

data80ex thur 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

data80ex 2 0 - 0 - 1.00 1.00
1 2 0.56 0 - 0.92 0.98

data80ap thur 2 2 0.12 0 - 0.94 0.98
1 3 0.23 0 - 0.89 0.96

data80ap 2 2 0.13 0 - 0.94 0.98
1 3 0.37 0 - 0.89 0.96

overall average 1.00 0.24 0.00 - 0.97 0.99

The upper part of the table shows the low-noise scenarios. Both simulated modes are al-
most always perfectly recovered for the exact sparsity scenarios. In the low-noise scenarios
with approximate sparsity, in almost all cases one of the modes is perfectly recovered, with
only 1 or 2 false zeros or non-zeros. One exception (data80ap ln) produces a larger number
of false non-zeros. However, the magnitude of false zero and non-zero loadings is small.

The lower part of the table displays the high-noise scenarios. In none of these, any false
non-zeros are found. In three cases, both modes are recovered perfectly, and one mode

11To account for the effect of setting loadings to zero, reported average values in this table are those
obtained from re-estimating the model conditional on the identified loading pattern.
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is perfectly recovered in one case (data80ex). The number of false zeros is small, ranging
from 1 to 3, but the average of true loadings is sometimes larger in magnitude, reaching
up to 0.56. Apparently, a lower signal-to-noise ratio induces the procedure to occasionally
identify slightly more sparsity than simulated. Figure 7 provides a graphical illustration
of average false zeros and non-zeros across scenarios.

Figure 8 displays heat plots of simulated (left) and estimated (right) loadings for both
modes of the scenario data50ex thur ln. They confirm that sparse patterns are well re-
covered by the procedure described in Subsection 4.1.

Figure 7: K = 2, unconstrained rotation: Boxplot of average absolute factor loadings (absolute
values), pooled across scenarios. The centerline is the median, the edges correspond to the 25th
and 75th percentiles (IQR), while the whiskers extend 1.5 times IQR beyond the edges. Note:
No false non-zeros in the higher noise scenarios, hence no boxplot to display.
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Figure 8: Heat plot of factor loadings, K = 2, scenario data50ex thur ln, estimated based on
the unconstrained rotation approach.
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Applying the sparse permutation sampler from Section 4.2 to the simulated data, we
estimate each scenario with 11 chains of 10,000 draws. After running an initial chain,
starting values for 10 parallel chains are obtained by random orthonormal rotation of a
draw for factor loadings of this initial chain. By retaining the last 4,000 of each chain, we
obtain 44,000 draws for posterior inference.

Figure 9: Posterior draws, unsorted and sorted, K = 2, scenario data50ex thur ln. From top
left to bottom right: Correlation of the first with all other posterior draws of factor 1, posterior
draws of a selected row of Λ, correlation of the first with all other sorted posterior draws of
mode-specific factor 1, sorted posterior draws of a mode-specific row of Λ.

0 2 4 6

×10
4

0.6

0.7

0.8

0.9

1

0 2 4 6

×10
4

-1.5

-1

-0.5

0

0.5

0 5000 10000

0.97

0.98

0.99

1

0 5000 10000

-1.5

-1

-0.5

0

0.5

0 2 4 6

×10
4

0.6

0.7

0.8

0.9

1

0 2 4 6

×10
4

-1.5

-1

-0.5

0

0.5

0 2 4

×10
4

0.98

0.985

0.99

0.995

1

0 2 4

×10
4

-1.2

-1

-0.8

-0.6

-0.4

(a) Mode 1 (8,000 sorted draws) (b) Mode 2 (36,000 sorted draws)

The first line in Figure 9 shows the unsorted draws from the sparse permutation sampler
for the scenario data50ex thur ln. In each panel, the left figure plots the correlations of
the first draw for the first factor with all remaining draws, while the right panel plots
the unsorted draws for a selected row of Λ. After clustering and re-ordering the draws
accordingly, 8,000 draws are allocated to the first mode (second line, left panel). The
correlation of the first draw for the first factor with all remaining draws is close to 1,
and the factor loadings for the selected row of Λ are all located near 0 and near −1,
respectively. Accordingly, the remaining 36,000 draws are allocated to the second mode
(second line, right panel). The correlation of the first draw for the first factor with all
remaining draws is close to 1 here as well, and the factor loadings for the selected row of
Λ are all located near −0.7 and −0.8, respectively. This implies that the first mode has
a nonzero loading in the chosen row of Λ only for one of the factors, whereas the second
mode has nonzero loadings in the chosen row of Λ for both factors.

Table 2 provides an overview of the estimation results obtained with the sparse permu-
tation sampler. The number of false zero and non-zero loadings is somewhat higher than
for the unconstrained rotation approach. However, the true loadings for false zeros are
overall small in absolute value. The average absolute value of false non-zeros is in the
same range as for the unconstrained rotation approach. Figure 10 provides a graphical
illustration of false zeros and non-zeros across low- and high-noise scenarios.
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Table 2: K = 2, sparse permutation: The first line evaluates the first mode, the second line
the second mode. The second column reports the number of posterior draws assigned to the
respective mode. Absolute true and estimated average are reported for, respectively, false zeros
and non-zeros.

Scenario Draws False zeros False non-zeros Matching indices
Number Average Number Average Jaccard Simple score

data50ex thur ln 8,000 8 0.03 0 - 0.83 0.90
36,000 2 0.05 0 - 0.96 0.97

data50ex ln 4,000 8 0.03 0 - 0.83 0.90
40,000 2 0.05 2 0.08 0.92 0.95

data50ap thur ln 4,000 0 - 1 0.08 0.98 0.99
40,000 0 - 1 0.03 0.98 0.99

data50ap ln 32,000 0 - 6 0.14 0.87 0.93
12,000 0 - 4 0.08 0.92 0.95

data80ex thur ln 16,000 0 - 0 - 1.00 1.00
28,000 2 0.04 0 - 0.93 0.97

data80ex ln 40,000 0 - 2 0.08 0.94 0.97
4,000 2 0.04 1 0.07 0.89 0.96

data80ap thur ln 28,000 2 0.13 1 0.15 0.91 0.96
16,000 0 - 0 - 1.00 1.00

data80ap ln 36,000 3 0.12 3 0.10 0.83 0.93
8,000 2 0.12 3 0.12 0.83 0.94

overall average 1.9 0.05 1.5 0.10

data50ex thur 20,000 8 0.03 0 - 0.83 0.90
24,000 2 0.05 0 - 0.96 0.97

data50ex 16,000 7 0.03 3 0.17 0.80 0.88
28,000 2 0.05 6 0.07 0.86 0.90

data50ap thur 32,000 1 0.12 0 - 0.97 0.99
12,000 1 0.13 0 - 0.98 0.99

data50ap 44,000 1 0.12 5 0.12 0.87 0.93
- - - - - - -

data80ex thur 20,000 0 - 0 - 1.00 1.00
24,000 2 0.04 0 - 0.93 0.97

data80ex 10,997 0 - 11 0.12 0.72 0.86
33,001 2 0.04 8 0.16 0.71 0.88

data80ap thur 28,000 3 0.12 0 - 0.91 0.96
16,000 2 0.12 0 - 0.93 0.97

data80ap 8,939 2 0.13 4 0.16 0.83 0.93
27,135 2 0.12 5 0.16 0.78 0.91

overall average 2.2 0.07 2.6 0.13

The heat plots for each mode of the factor loading matrices is shown in Figure 11, where
simulated and estimated structures are displayed on, respectively, the left and right side.
Note that the sign of estimated loadings has been adjusted such that the majority of
loadings is positive for each factor. Therefore, the sign of estimated loadings is opposite to
the simulated ones. Also this procedure is able to recover well both underlying simulated
sparse structures.

5.2 Simulated K = {3, 4} with pervasive and local factors

For K = 3 we simulate a pervasive factor, denoted as 1pf, i.e., a strong factor driving all
variables, and two weaker, i.e., local or group-specific, factors, which can be represented
by two underlying sparse loading structures. For K = 4, we simulate one or two pervasive
factors, denoted as 1pf or 2pf, complemented with, respectively, three or two weaker
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Figure 10: Boxplot of factor loading (absolute values), K = 2, estimated with the sparse
permutation sampler, pooling over scenarios and factors. The centerline is the median, the
edges correspond to the 25th and 75th percentiles (IQR), while the whiskers extend 1.5 times
IQR beyond the edges.
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Figure 11: Heat plot of factor loadings, K = 2, scenario data50ex thur ln, estimated with the
sparse permutation sampler.
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factors. Again, we simulate data with a high and low signal-to-noise ratios, where the
former is denoted as ln. Combining these features yields six settings, from which we
simulate N = 60 series of length T = 100 each.

The ex-post approach from Section 4.1 is applied to sequences of length 200,000 each, as
in the case of K = 2 factors, and the algorithm again attempts to find two distinct modes,
applying a penalty to the first mode when looking for the second mode.Throughout, the
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highest posterior density intervals are constructed with α = 0.05.

Table 3 shows for the each scenario the comparison of each estimated mode with the closest
simulated mode. It reports the number of false zeros and non-zeros per mode, and the
Jaccard and simple matching coefficients between simulated and estimated factor loading
structure for each mode. We also report the average absolute value across false zero and
non-zero loadings. For the scenario K3m2 1pf ln, both modes are perfectly recovered.
For the corresponding scenario with higher noise, there are 12 false zeros in both modes,
with an average absolute true value of around 0.3. For the scenarios with K = 4 factors
and one pervasive factor, the number of false zeros reaches up to 39, and up to 12 false
non-zeros are estimated. Especially in the scenario K4m2 2pf, the average across the 12
false non-zeros is 0.4 or 0.5, which indicates that the estimated sparse representations
are somewhat different from the simulated ones. For the scenarios with two pervasive
factors, the number and the average absolute value of false zeros seem very large. There
is a good explanation for this feature, however, discussed below. The left panel in Figure
12 visualizes some details of Table 3 by displaying box-plots of average true values of
false zeros and estimated values of the false non-zeros, pooled across scenarios with two
pervasive factors.

Table 3: K = 3, K = 4, unconstrained rotation, α = 0.05: The second column shows which
mode was found first and which second. Absolute true and estimated average are reported for,
respectively, false zeros and non-zeros.

Scenario Ordering False zeros False non-zeros Matching indices
Number Average Number Average Jaccard Simple score

K3m2 1pf 2 12 0.34 0 - 0.88 0.93
1 12 0.30 0 - 0.88 0.93

K3m2 1pf ln 2 0 - 0 - 1.00 1.00
1 0 - 0 - 1.00 1.00

K4m2 1pf 2 39 0.28 9 0.24 0.66 0.80
1 35 0.26 3 0.10 0.72 0.84

K4m2 1pf ln 1 24 0.24 12 0.50 0.75 0.85
2 24 0.22 12 0.44 0.75 0.85

K4m2 2pf 1 84 0.40 1 0.40 0.46 0.65
2 80 0.41 4 0.16 0.47 0.65

K4m2 2pf ln 2 53 0.46 13 0.39 0.65 0.78
1 67 0.42 1 0.54 0.52 0.67

Figure 13 displays heat plots for factor loadings of the scenario K4m2 2pf, for simulated
and estimated loadings on the left and right side, respectively, of each panel. Note that
the factor orderings have been adjusted for better fit. In both top panels we see that the
estimated loading structure for the pervasive factors is more sparse than for simulated
factors, which reflects the large number reported false zeros in Table 3. However, the
posterior rotation approach precisely induces sparsity. The bottom panels display a Vari-
max rotated version of the simulated pervasive factors in each left-hand heat plot. We
see that the posterior rotation solution identifies a sparse structure closely resembling the
Varimax rotation of simulated loadings. For the non-pervasive factors, there are several
deviations, which reflects the results reported in Table 3.

The sparse permutation sampler was run with 16 chains of 10,000 draws. After an initial
chain, starting values for factor loadings are obtained by random orthonormal rotations
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Figure 12: Scenario K4m2 2pf and K4m2 2pf ln, pooling over modes. Boxplot of factor load-
ings (absolute values). The centerline is the median, the edges correspond to the 25th and 75th
percentiles (IQR), while the whiskers extend 1.5 times IQR beyond the edges. (a) Unconstrained
rotation output (b) Sparse permutation output
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of a factor loading draw taken from the initial chain. We again retain the last 4,000 of
each chain to obtain 64,0000 draws for posterior inference.

Table 4 provides an overview of the estimation results obtained with the sparse permu-
tation sampler. Note that for all scenarios, the number of draws assigned to each mode
do not sum up to 64,000. While the sum across modes is only slightly below 64,000 for
the scenarios K3m2 1pf and K4m2 2pf ln, the number of draws not assigned to one of
simulated modes is substantially larger in the remaining scenarios.12 Nonetheless, for the
scenarios with K = 3 factors, both modes are identified perfectly, and in the scenarios
with K = 4 factors, there are only very few false non-zero loadings throughout, and the
number of false zeros is much smaller than in the analysis based on the unconstrained
rotation approach. The true loadings in the case of false zeros are smaller in magnitude
for the scenarios with K = 4 and one pervasive factor, and similar for the scenarios with
K = 4 and two pervasive factors (see also the right panel in Figure 12). Note that for
the scenarios with two pervasive factors, we also identify a large number and average
true value of false zeros. The explanation is the same as for results obtained by posterior
rotation.

Figure 14 displays heatplots of simulated and estimated factor loadings for the scenario
K4m2 2pf. As for posterior rotation, the sparse structure identified for the two pervasive
factors comes close to a Varimax rotation of the simulated loadings (bottom panels).
Overall, the loading structure of the two non-pervasive factors is recovered quite well for
both modes, which clearly outperforms posterior rotation.

12Figure 28 in Appendix C.2 displays an example for sorted and unsorted posterior draws for the
scenario K4m2 2pf, similar to Figure 9.
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Figure 13: Heat plot of factor loadings, K = 4, scenario K4m2 2pf, unconstrained rotation.
Second line: Varimax rotation of simulated loadings for the two pervasive factors.
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Table 4: Evaluations of the results obtained from the sparse permutation sampler: The first
(second) line evaluates the first (second) mode. The column labelled Draws reports the number
of posterior draws assigned to the simulated mode.

Scenario Draws False zeros False non-zeros Matching indices
Number Mean Number Mean Jaccard Simple score

K3m2 1pf 27,999 0 - 0 - 1.00 1.00
35,959 0 - 0 - 1.00 1.00

K3m2 1pf ln 8,000 0 - 0 - 1.00 1.00
43,813 0 - 0 - 1.00 1.00

K4m2 1pf 22,661 15 0.14 0 - 0.89 0.94
13,712 10 0.14 0 - 0.92 0.96

K4m2 1pf ln 4,000 0 - 0 - 1.00 1.00
2,895 12 0.16 18 0.24 0.80 0.88

K4m2 2pf 20,670 57 0.48 1 0.39 0.63 0.76
38,661 59 0.47 1 0.39 0.62 0.75

K4m2 2pf ln 12,000 41 0.46 1 0.41 0.73 0.82
51,898 40 0.46 1 0.41 0.74 0.83

29



Figure 14: Heat plot of factor loadings, K = 4, scenario K4m2 2pf, estimated based on the
sparse permutation sampler. Second line: Varimax rotation of simulated loadings of the two
pervasive factors.
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6 Applications

We revisit the datasets used in Kaufmann and Schumacher (2017): Monthly inflation in
US sectoral CPI components (Mackowiak et al., 2009) and yearly GDP growth rates of a
multi-country panel used in Francis et al. (2017). To analyze the datasets, we extend the
specification to include p autoregressive terms to capture factor dynamics and q terms to
capture (independent) idiosyncratic dynamics.

6.1 Monthly CPI sectoral inflation rates

The dataset contains N = 79 sectoral inflation series covering the period February 1985
to May 2005, T = 244. We estimate a model with K = 2 factors, include p = 4 and
q = 2 factor and idiosyncratic autoregressive terms, respectively, which reflects results
documented in Mackowiak et al. (2009). Mackowiak et al. (2009) preferred a model with
one over two factors, although results remain basically unchanged when including two
factors. We revisit the dataset to evaluate whether the uncertainty about the number of
factors may be due to underlying weak factors.

Figure 15: US CPI: Estimated factor loadings, based on the unconstrained rotation approach.
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Figure 15 shows the loadings patterns identified by the unconstrained rotation approach.
For the first mode, shown in the left panel, there are 33 non-zero loadings on the first
factor and 12 non-zero loadings on the second factor. All loadings are nonnegative. For
the second mode, shown in the right panel, there are 39 non-zero loadings on the first
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factor and 18 non-zero loadings on the second factor. In this case, there are several
negative loadings on the second factor.

Were the first factor pervasive, also factor loadings should be similar across modes. This is
not quite the case shown in Figure 15 and hard to assess from mean factor plots displayed
in Figure 16. However, the correlation across Factors 1 in both modes is 0.86, while
the correlation across factors in each mode is as low as 0.18 and 0.09 for mode 1 and 2,
respectively. We conclude that there is evidence for a pervasive factor, despite the fact
that the algorithm penalizes similar sparse solutions and optimizes to find differences in
all factors.

Figure 16: US CPI: Mean factors, based on the unconstrained rotation approach.
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Using the sparse permutation sampler, the results are based on 13 chains of 11,000 draws,
retaining the last 5,000, obtaining 65,000 draws for posterior inference. In a first round,
clustering factor draws based on correlations we identify one pervasive factor. Therefore,
we set G = 3 to post-process factor draws as described in Appendix B.3 setting e0 =
.1(K/2 − 1); each draw is assigned to one of the three components, potentially allowing

for

(
3

2

)
= 3 factor combinations IZ = {Z1, Z2} ⊂ {1, 2, 3}, all Zk different.

Sorting out the draws, only two factor combinations are visited. See in Table 5 that
almost all of the 65,000 draws can be assigned to either of the two modes. We identify
1 pervasive factor and 2 weaker ones.13. Figure 17 shows the loadings patterns. In the
first mode, there are 25 non-zero loadings on the first factor and 23 on the second factor,
while in the second mode, there are 34 non-zero loadings on the first factor and 13 on the

13Non-zero loadings are determined by loadings for which the median posterior probability of a non-zero

factor loading is larger than 0.5, β̂ij > 0.5, with β̂ij = median(β
(m)
ij ).
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second factor. Negative loadings occur with the second factors, but are rare and overall
close to zero.

Table 5: US CPI: Sorted output

Factor combination Draws Non-zero loadings Jaccard matching indices
Compared to {1, 2}

{1, 2} 53,086 25/23 - -
{1, 3} 11,793 34/13 73.5 28.6

Figure 17: US CPI: Median factor loadings, based on the sparse permutation sampler.
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Looking at the correlations across mean factors (Figure 18), the correlation between the
two first factors is virtually 1, while the two second factors show merely a correlation
of about 0.5. The correlation between the two factors from both modes is 0.59 and
0.31, respectively, and hence somewhat larger than between the factors identified by the
unconstrained rotation approach. The mean factors themselves are shown in Figure 19.

33



Figure 18: US CPI: Factor correlations, across factor combinations
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Figure 19: US CPI: Mean factors, based on the sparse permutation sampler.
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6.2 Yearly GDP growth rates

The dataset contains N = 57 GDP growth series covering the years 1961 to 2009, T = 49.
We estimate a model with K = 4 factors, include p = 2 and q = 1 factor and idiosyncratic
autoregressive terms, respectively. We again revisit the data to uncover the number and
characteristics of factors, i.e. whether a number of pervasive factors may be extracted
with potentially differing local factors.

Figure 20: GDP growth, unconstrained rotation: Mean factor loadings
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Figure 20 shows the loadings patterns identified by the unconstrained rotation approach.
For the first mode, shown in the left panel, there are 5, 5, 22 and 12 non-zero loadings,
respectively, on the four factors. There are two negative loadings, one on the first and
one on the fourth factor, both close to zero. For the second mode, shown in the right
panel, there are 9, 7, 22 and 11 non-zero loadings, respectively, on the four factors, with
two negative loadings each on the first and second factors.

Figure 21 shows the factors, those corresponding to the first mode in the upper two
rows, and those corresponding to the second mode in the lower two rows. Looking at the
correlations between factors across modes, Factors 1, 2 and 3 correlate with, respectively
0.99, 0.97 and 1 across modes, while the correlation between the fourth factor of each
mode is somewhat lower. We conclude that there are three pervasive factors, whereas the
fourth factor is a local or weak one in each mode.

For the sparse permutation sampler, the results are again based on 13 chains of 11,000
draws, retaining the last 5,000, obtaining 65,000 draws for posterior inference. Clus-

35



Figure 21: GDP growth: Mean factors, obtained from the unconstrained rotation approach.
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tering factor draws in a first round based on correlations, we identify 3 pervasive fac-
tors. Therefore, we set G = 7 to post-cluster factor draws as described in Appendix
B.3, setting e0 = 0.01(G/2 − 1) to allow for empty clusters. Each draw is assigned

to one of seven components, potentially allowing for

(
7

4

)
= 35 factor combinations

IZ = {Z1, . . . , Z4} ⊂ {1, . . . , 7}, all Zk different.

Sorting out the draws, only three factor combinations are visited. Table 6 reports again
that almost all of the 65,000 draws can be assigned to either of the three modes. We
identify 3 pervasive factors and 3 weaker ones. Figure 22 displays the loadings patterns.
The number of non-zero loadings on the three pervasive factors is virtually identical across
the three modes, with 13 or 14 non-zero loadings on the first, 7 non-zero loadings on the
second, and 41, 42 or 43 non-zero loadings on the third factor. Moreover, note that these
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non-zeros occur in the same places. For the fourth factor, there are between 11 and 16
non-zero loadings, and the location of these vary substantially across factors.

Table 6: GDP growth: Sorted output

Factor combination Draws Non-zero loadings Jaccard matching indices
Compared to {1, 2, 3, 4}

{1, 2, 3, 4} 16,181 14/7/43/11 - - - -
{1, 2, 3, 5} 18,037 13/7/42/16 92.9 1.0 97.7 3.9
{1, 2, 3, 6} 30,473 13/7/41/16 80.0 1.0 95.4 3.9

Figure 22: GDP growth, sparse permutation: Mean factor loadings, averaged over draws with
a non-zero probability larger than .5.
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Looking at the correlations between factors across modes (Figure 23), the correlation
between the first three pervasive factors across modes is virtually 1, while the correlations
between the fourth factors across modes are close to zero. Correlations across factors of
each mode are also low to moderate only. The mean factors themselves are shown in
Figure 19.

37



Figure 23: GDP growth: Factor correlations, across factor combinations
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Figure 24: GDP growth: Mean factors, obtained from the sparse permutation sampler.
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7 Conclusion

We present two approaches to uncover whether a sparse factor representation underlies
high-dimensional data and whether the sparse representation is (locally) unique. Both ap-
proaches estimate the factor model within a Bayesian framework based on order-invariant,
just-identified Markov chain Monte Carlo sampling. The first approach specifies a normal
prior distribution for factor loadings and explores the unconstrained posterior distribution
by implementing an unconstrained random rotation sampler. The second approach in-
duces sparsity in the factor loading matrix by specifying a hierarchical point mass-normal
mixture prior distribution on factor loadings. Random permutation of factor position and
signs helps exploring the unconstrained posterior distribution. Given that the sampler
may stabilize upon convergence to a sparse representation of the factor loading matrix, we
run multiple chains in parallel to allow the sampler to converge to various sparse modes.

The posterior output of both samplers is post-processed to uncover potential multiple
sparse representations of the factor model. The output of the unconstrained rotation
sampler is optimally rotated towards sparse representations, i.e. towards different, most
sparse representations displaying similar sparsity. The output of the sparse permutation
sampler is post-processed to cluster factor and factor loading draws and group them into
typical combinations of joint factor draws.

An extensive simulation exercise demonstrates that both approaches recover multiple un-
derlying sparse representations, also in the presence of so-called pervasive factors, that is,
factors affecting most and the same units in multiple sparse representations. We illustrate
the importance of uncovering multiple sparse structures by applying the method to two
datasets, for which the determination of the number of factors has been ambiguous in
empirical applications. We show that pervasive factors underly each dataset, while some
weaker factors are present, each identifiable jointly with the pervasive ones, but too weak
to be jointly identifiable all together. The applications evidence that the sparse permuta-
tion sampler extracts pervasive factors of higher correlation across sparse representations
than the rotated output of the unconstrained rotation sampler, and eventually identifies
more weak factors.

Multiple sparse factor loading representations potentially lead to different factor and
structural interpretations, which may be exploited in future research depending on the
research question of interest.
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A Posterior distribution of factor loadings and hy-

perparameters

The prior (7)-(9) in Subection 3.1 implies a common base rate of a non-zero factor loading
of E (βij) = ρjb across variables. The marginal prior becomes

π (λij|ρj) ∼ (1− ρjb)δ0(λij) + ρjbN (0, τj)

For each factor j, transform the variables to

y
(j)
it = yit −

k∑
l=1,l ̸=j

λilflt = λijfjt + ϵit

which isolates the effect of factor j on variable i. Combine the marginal prior with data
information to sample independently across i from

π (λij|·) =
T∏
t=1

π(y
(j)
it |·) {(1− ρjb)δ0(λij) + ρjbN (0, τj)}

= P (λij = 0|·) δ0(λij) + P (λij ̸= 0|·)N (mij,Mij)

with observation density π(y
(j)
it |·) = N

(
λijfjt, σ

2
i

)
and where

Mij =

(
1

σ2
i

T∑
t=1

f 2
jt +

1

τj

)−1

, mij =Mij

(
1

σ2
i

T∑
t=1

fjty
(j)
it

)

The posterior odds of a non-zero factor loading in (21) are given by:

P (λij ̸= 0|·)
P (λij = 0|·)

=
π (λij) |λij=0

π (λij|·) |λij=0

ρjb

1− ρjb
=

N (0; 0, τj)

N (0;mij,Mij)

ρjb

1− ρjb

Conditional on λij we update the variable specific probabilities βij and sample from
π(βij|λij, ·). If λij = 0

π(βij|λij = 0, ·) ∝ (1− βij) [(1− ρj)δ0(βij) + ρjB (ab, a(1− b))]

P (βij = 0|λij = 0, ·) ∝ (1− ρj), P (βij ̸= 0|λij = 0, ·) ∝ (1− b)ρj

That is, with posterior odds (1 − b)ρj/(1 − ρj) we sample from B (ab, a(1− b) + 1) and
set otherwise βij equal to zero. Conditional on λij ̸= 0 we obtain

π(βij|λij ̸= 0, ·) ∝ βijN (λij; 0, τj) [(1− ρj)δ0(βij) + ρjB (ab, a(1− b))]

P (βij = 0|λij ̸= 0, ·) = 0, P (βij ̸= 0|λij ̸= 0, ·) = 1

In this case we sample βij from B (ab+ 1, a(1− b)).
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The hyperparameters τj and ρj are sampled from, respectively, an inverse Gamma π (τj|·) ∼
IG (gj, Gj) and a Beta distribution, π (ρj|·) ∼ B (r1j, r2j), with

gj = g0 +
1

2

N∑
i=1

I {λij ̸= 0} , Gj = G0 +
1

2

N∑
i=1

λij
2

r1j = r0s0 + Sj, r2j = r0(1− s0) +N − Sj, and Sj =
N∑
i=1

I {βij ̸= 0}

and I {·} is the indicator function.

B Post-processing

B.1 Givens decomposition of an orthogonal matrix

The Givens decomposition of an orthogonal matrix H with H ′H = HH ′ = IK can be
performed as follows. First, it is necessary to find all pairs of axes k1, k2 ∈ {1, . . . , K}

with k1 ̸= k2. Note that there are P =

(
K

2

)
such pairs, numbered p = {1, . . . , P} in the

following. Then the following steps must be applied, starting with p = 1.

1. Determine the two-dimensional Givens rotation matrix

Gp =
1

∥(hk1,k1 , hk2,k1)′∥2
·
(

hk1,k1 hk2,k1
−hk2,k1 hk1,k1

)
=

(
gp,1,1 gp,1,2
gp,2,1 gp,2,2

)
.

2. Calculate the Givens rotation angle of matrix Gp as

γp = arctan2(gp,2,1, gp,1,1).

3. Replace the k1
th and k2

th row of matrix H, denoted as the submatrix H{k1,k2},·, by
its rotated version GpH{k1,k2},·.

4. If p < P , increment p and proceed with step 1, otherwise the decomposition is
complete, in which case H = IK must hold.

B.2 Constructing a K = 3-dimensional hyperellipsoids

Figure 25 extends the construction exercise to three dimensions. Each row of the plot
shows one pair of dimensions, with dimensions 1 and 2 in the first, 1 and 3 in the second,
and 2 and 3 in the third row. The unit circle in the first panel of each row is hence actually
a unit ball when all three dimensions are considered. The three ellipses in the second
panels of each row represent the views on the expanded ellipsoid from three different
angles. In the third panels of each row, the rotation has been applied, and the original

43



Figure 25: 95% highest posterior density ellipsoid for K = 3, built by first expanding the unit
ball, then applying a rotation and a translation. Top row shows axes 1 and 2, middle row shows
axes 1 and 3, and bottom row shows axes 2 and 3. Original data points shown in black (inside
the ellipsoid) and red (outside the ellipsoid) in the panels in the right column.
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axes are indicated within the resulting rotated ellipsoids shown. Again, the last panel
of each row shows the data points inside and outside the ellipsoid as black dots and red
marks. Note that the red marks apparently within the ellipsoid are in fact located in
front of it or behind it. The share of points inside the ellipsoid is again guaranteed to be
exactly 1− α.

B.3 Ex-post clustering of factor draws

The posterior output of the sparse permutation sampler has 2KK! modes. Posterior mode
identification will assign each factor draw f

(m)
k = {f (m)

kt |t = 1, . . . , T}, k = 1, . . . , K,m =
1, . . . ,M to one of K clusters, if we neglect the sign switch, i.e. if we sign-adjust appropri-
ately the factor draws. If multiple sparse factor representations are possible, the posterior
output will display a multiple of 2KK! modes. In this case, the factor draws f

(m)
k will

group into G ≥ K clusters. To sort out the posterior output, we set up a mixture model
with mixture indicator z

(m)
k = {1, . . . , G} which indicates the cluster g = {1, . . . , G} with
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which factor draw f
(m)
k is associated. We define the following hierarchical prior model

P (z
(m)
k = g) = ηg, g = 1, . . . , G (21)

η = (η1, . . . , ηG) ∼ D(e0, . . . , e0) with e0 = (G− 1)/2 (22)

π(f
(m)
k |z(m)

k = g) ∼ N (fg,Fg) , where Fg = diag(Fg1, . . . ,FgT )

π(fg) ∼ N (0T×1, IT ) , Fgt ∼ IG(s0, S0)

The prior for the mixture indicator (21)-(22) is uniform discrete and the Dirichlet speci-
fication with e0 = (G− 1)/2 allows for empty clusters ex-post, Rousseau and Mengersen
(2011).

An estimate of the clusters and cluster association for each draw is obtained by sampling
iteratively over the following steps:

1. Update cluster association of each factor draw f
(m)
k , k = 1, . . . , K, m = 1, . . . ,M :

π
(
z
(m)
k |f (m)

k , fg,Fg, η
)
. The posterior probability of cluster association is propor-

tional to

P
(
z
(m)
k = g|f (m)

k , fg,Fg, η
)

∝ |Fg|−1/2 exp

{
−0.5

T∑
t=1

(sad(f
(m)
kt )− fgt)

2

Fgt

}
ηg (23)

The expression sad(f
(m)
kt ) means sign adjustment according to

sad(f
(m)
kt ) =


f
(m)
kt if

T∑
t=1

(f
(m)
kt − fgt)

2 <
T∑
t=1

(−f (m)
kt − fgt)

2

−f (m)
kt if

T∑
t=1

(f
(m)
kt − fgt)

2 >
T∑
t=1

(−f (m)
gt − fgt)

2

This operation adjusts the sign of those draws which are negatively correlated to
the factor mean due to random sign switching applied during model estimation.

Simulate U ∼ (0, 1) and set z
(m)
k equal to

g =

(
G∑
l=1

I

{(
l∑

j=1

P (z
(m)
k = j|·)

)
≤ U

})
+ 1

where I {·} represents the indicator function and P (z
(m)
k = j|·) are the normalized

posterior cluster probabilities obtained from (23).

2. Update the cluster association probabilities: π(η|z) ∼ D(e1, . . . , eG) with eg =

e0 +Ng, Ng =
∑
k,m

I{z(m)
k = g}, g = 1, . . . , G.

3. Update the factor representative fg, i.e. the mean path of factors, in cluster g =
1, . . . , G: π (fg|z,f) ∼ N

(
f̄g, F̄g

)
, with moments

F̄g = (NgF
−1
g + IT )

−1 and f̄g = F̄g

(
F−1
g

Ng

∑
k,m

sad(f
(m)
k )I{z(m)

k = g}

)

45



4. Update the time-specific variance of factors in cluster g: π (Fgt|z, fg,f) ∼ IG (sgt, Sgt)
with

sgt = s0 + 0.5Ng and Sgt = S0 + 0.5
∑
k,m

(sad(f
(m)
kt )− fgt)

2I{z(m)
k = g}

For factors, we set s0 = 2 and S0 = 1. When we set up a mixture model for factors
stacked with factor loadings, we set s0 = .3125 and S0 = 5 for factor loadings.

C Additional material for the simulation study

C.1 Orthogonal matrices for minimal correlation

In order to keep rotations of factors and loading matrices as far apart from each other
as possible, consider that by assumption of static uncorrelated factors with identical unit
variances, i.e. F ∼ (0, IK), we have E(FF ′) = IK . Transforming the factors by an
orthogonal matrix D ∈ O(K) yields F̃ = DF . Minimizing the variance between all
members of the initial set of factors and all members of the rotated set of factors is
therefore identical to minimizing the largest absolute element of the matrix D. The
covariance matrix of the initial and the rotated factors thus becomes

Cov
((
F F̃

))
=

(
IK D
D′ IK

)
.

If more than two modes are desired, use the result that for two orthogonal matrices D1

and D2, the matrix D1D2 is likewise orthogonal. Therefore, to obtain m modes that
minimize the absolute correlation between any two factors, orthogonal matrices D1 to
Dm−1 are required, and, defining D0 = I, it must hold that the largest absolute matrix el-
ements of any productD′

iDj with i ̸= j and i, j ∈ {0, . . . ,m} becomes as small as possible.

Two interesting results are explained in the following: First, for m = 2 and small values
of K, minimizing the largest absolute element of the matrix D yields the same result as
minimizing the variance of the absolute elements of D. Moreover, if a solution for K1 and
K2 has been found, say, DK1 and DK2 , where K1 = K2 may hold, a solution for K1K2 is
found as DK1 ⊗DK2 .

Consider e.g. the case K = 2. The rotation matrix that minimizes the angles between

F and FD(2) is either D
(2)
1 =


1√
2

1√
2

− 1√
2

1√
2

 or D
(2)
2 =


1√
2

− 1√
2

1√
2

1√
2

, as shown in

Figure 26, where D
(2)
2

′
= D

(2)
1 .
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Figure 26: Minimal correlation solutions for 2, 3 and 4 modes in the 2-dimensional case.

Next, consider the case K = 3. The rotation matrix that minimizes the angles between F

and FD can now take several different forms, one of which is D(3) =


−1

3

2

3

2

3
2

3
−1

3

2

3
2

3

2

3
−1

3

.

Figure 27 shows three solutions for two modes in the 3-dimensional case.
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Figure 27: Three different minimal correlation solutions for 2 modes in the 3-dimensional case.

Regarding K = 4, the above mentioned result can be used, i.e., solutions obtain as D
(2)
1 ⊗

D
(2)
1 , D

(2)
1 ⊗D

(2)
2 , D

(2)
2 ⊗D

(2)
1 , and D

(2)
2 ⊗D

(2)
2 , with D

(2)
1 =


1√
2

1√
2

− 1√
2

1√
2

 and D
(2)
2 =


1√
2

− 1√
2

1√
2

1√
2

. This yieldsD
(4)
1 =



1

2

1

2

1

2

1

2

−1

2

1

2
−1

2

1

2

−1

2
−1

2

1

2

1

2
1

2
−1

2
−1

2

1

2


,D

(4)
2 =



1

2
−1

2

1

2
−1

2
1

2

1

2

1

2

1

2

−1

2

1

2

1

2
−1

2

−1

2
−1

2

1

2

1

2


,

D
(4)
3 =



1

2

1

2
−1

2
−1

2

−1

2

1

2

1

2
−1

2
1

2

1

2

1

2

1

2

−1

2

1

2
−1

2

1

2


, and D

(4)
4 =



1

2
−1

2
−1

2

1

2
1

2

1

2
−1

2
−1

2
1

2
−1

2

1

2
−1

2
1

2

1

2

1

2

1

2


, where D

(4)
4

′
= D

(4)
1

and D
(4)
3

′
= D

(4)
2 .
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C.2 Additional figures from the simulation study

Figure 28: Posterior draws, unsorted and sorted, K = 4, two pervasive factors, scenario
K4m2 2pf. From top left to bottom right: Correlation of the first with all other posterior draws
of factor 1, posterior draws of a selected row of Λ, correlation of the first with all other sorted
posterior draws of mode-specific factor 1, sorted posterior draws of a mode-specific row of Λ.
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