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Abstract

It is common to transform data to stationarity, such as by differencing and de-
meaning, before estimating factor models in macroeconomics. Imposing these trans-
formations, however, limit opportunities to learn about trending behaviour. Trends
and deterministic processes can play a central role in the behaviour of macroeco-
nomic processes and so it is important to be able to characterise these features of the
data. In this paper, we develop a model of common and idiosyncratic deterministic
and stochastic processes in a factor model. We work with the unidentified model.
A judicious choice of parameter expansion and post-processing ensures the model
avoids a non-invariant specification such that the inference is data driven and the
computation is efficient.

1 Motivation

In high-dimensional multivariate dynamic modelling, it is common practice to transform
the data prior to analysis by differencing and then demeaning the differenced data. The
data are sometimes also then standardized, but our focus is on the detrending transforma-
tion. There are good reasons for employing these transformations as, for example, they
often improve computation or simply limit the scope of the study to reduce complexity
by excluding consideration of the deterministic processes. There are, however, many im-
portant questions in economics that are informed by the behaviour of the deterministic
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processes, such as the existence and form of balanced growth paths or steady state deter-
ministic growth paths. It is, therefore, important in such cases to model these processes.
This paper proposes a specification for a factor model that permits analysis of both the
stochastic and the deterministic terms.

There are several approaches to decomposing vector series into common and idiosyn-
cratic, stochastic and deterministic processes. Nonstationary univariate linear processes
may be decomposed into nonstationary (permanent) and stationary (transitory) compo-
nents using approaches developed, for example, in Beveridge and Nelson (1981). In a
vector process, if there are common stochastic trends that capture all of the long-run,
stochastic, non-stationary drifting component and the idiosyncratic components follow
stationary processes then the processes may cointegrate (Engle and Granger 1987; Stock
and Watson 1988; Sims et al. 1990). In the study of cointegrating systems, the multi-
variate Beveridge-Nelson decomposition identifies the cointegrating space and, as such,
the permanent common and transitory idiosyncratic components of the system. This
decomposition can be obtained from the vector error correction model (VECM) of the
cointegrating VAR. Using the VECM, we may also extract the deterministic processes of
the common components and the idiosyncratic deterministic processes for each variable
in the system (Johansen 1995). Existing factor models do not fit within these decomposi-
tions, and VECMs may not be an appropriate choice to analyze high-dimensional vector
series.

A factor model is a natural candidate to analyze high-dimensional data sets (Forni et al.
2000; Stock and Watson 2002a; Stock and Watson 2002b). As mentioned, most applica-
tions analyze non-trending and standardized data, where (drifting) trends are removed
by mean-adjusting first differences of the (log) level series. A factor model fitted to first-
differenced, mean-adjusted series implies that common factor and idiosyncratic shocks
both have a permanent level effect, although permanent effects of idiosyncratic shocks
sometimes are ruled out by assumption (such as a noninvertible MA process). Given the
usual ex-ante data transformation, extracted factors will capture joint dynamics without
extracting a potential common drift. Hence, extracted factors represent the stochastic
part of the trend component of the level series – the sum of shocks – without incorporat-
ing the deterministic component – the drift.

Interest often lies in the relative contributions of common and idiosyncratic processes to
total variation of the variables in the system. Such a decomposition of the stochastic
processes can prove highly informative on a range of economic questions. Similarly, the
deterministic terms may be decomposed into both common and idiosyncratic components
and empirical analysis of these terms can inform us on a number of important issues.
Therefore, it will be of interest to extract factors that include both the stochastic as well
as the deterministic drift driving each series.

In the present paper, we specify a model to analyze time series displaying common as
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well as idiosyncratic deterministic drifts in levels. We extract factors that follow a unit
root process with potential drift to capture the common drifting trend component. We
do not consider cointegration to limit the scope to decomposition of the deterministic
and stochastic trends into common and idiosyncratic terms, i.e. the idiosyncratic term in
the factor model is not restricted to be over-differenced. As the factor-driven drift com-
ponent may not account for all of a series-specific drift, the idiosyncratic non-stationary
component potentially may also display a drift. In addition, we extend the model to take
into account that the series-specific factor-driven drift may (randomly) deviate from the
extracted factor drift. This allows us to capture common trends in series which behave
as cointegrated including a trend.

We contribute to the literature on factor modelling by explicitly modelling series-specific
deterministic terms. Given that we do not pre-impose overidentifying restrictions, pos-
terior inference on the factor space, factor identification and interpretation is essentially
data driven and self-organizing. The specification of the factor model raises identification
issues, as the series-specific drift has to be decomposed into the common and idiosyncratic
components. Moreover, without setting factor-identifying or rotational restrictions prior
to posterior inference leaves so-called factor founders, i.e. factor-determining series, unde-
termined and renders factor-specific drifts undetermined, too. Factor interpretation or the
factor space is determined by inducing shrinkage into the factor loading matrix (Griffin
and Brown 2017), and rotational identification is obtained by post-processing the draws
from the posterior distribution (Chan et al. 2018, Kaufmann and Schumacher 2019).
To identify factor drifts, we derive the non-centered representation of the factor model
(Papaspiliopoulos et al. 2007). We implement a parameter expansion procedure (Liu
and Wu 1999) to sample factor loadings and obtain draws of factor drifts corresponding
to averages across series-specific drifts weighted by factor loadings (i.e. factor strength).
Posterior inference and post-processing allows us to characterize the common factors and
decompose the level series into a common factor-driven drifting and an idiosyncratic, in
most series non-trending, trend component.

In related work, non-stationary factors usually are extracted after de-meaning and stan-
dardizing the data. Most closely related to the present paper is Stock and Watson (1989),
who extract a coincident indicator from four time series, transformed to growth rates by
taking first differences of the logarithmic levels and mean-adjusted to remove the drift
prior to estimation. The drift (δ) of the coincident indicator is backed out after estimation
based on the Kalman gain. The deviation of the series’s unconditional (average) growth
rate from the factor growth rate represents the idiosyncratic deterministic component,
Di = ∆Y i − δ. Kim and Nelson (1998) use the approach to back out the drift of a coinci-
dent economic indicator with Markov switching growth rate. The decomposition implies
a non-stationary process for the idiosyncratic component in the level series. In a more
recent paper, Müller et al. (2022) model the low-frequency component of a large panel
of GDP growth series. A local linear trend extracts the global common drift, while ad-
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ditional hierarchical levels capture group-specific, highly persistent (low-frequency) drift
components. To render a factor model consistent with predictions of theoretical asset pric-
ing models, Favero and Melone (2020) propose a factor error correction model, where the
deviation of variables’ levels from implied factor levels induces a mean-reverting reaction
in returns. The cointegration assumption implies a stationary series-specific idiosyncratic
component.

Only few papers published between Stock and Watson (1989) and Müller et al. (2022),
Favero and Melone (2020), such as Bai and Ng (2004) and Barigozzi et al. (2016), explic-
itly account for series-specific deterministic terms. However, given that there is no interest
in decomposing these terms into a factor-driven and an idiosyncratic component, the terms
cancel out when the factor model is analyzed and estimated for variables transformed to
non-trending, mean-adjusted series. Corona et al. (2020) analyze a non-stationary factor
model, without including a drift. The extracted factor displays a drift, however, which in
principle violates the symmetric distributional assumption of factor shocks. This is also
the case in Bai (2004), who additionally assumes stationary idiosyncratic components in
the level series. This implies cointegration between non-stationary factors and observed
variables, as shown in Banerjee et al. (2017).

The next section introduces the specification of the factor model, discusses identification
issues, and introduces an extension interpretable as a factor-driven drift model with ran-
dom effects. Section 3 outlines the prior specifications and the Markov chain Monte Carlo
(MCMC) sampler. We discuss parameter expansion in more detail and how to obtain
identification of factor drifts. In Section 5, we estimate the model using datasets from
various studies (Bai 2004; Eden et al. 2021; Müller et al. 2022) to illustrate the procedure.
Section 6 concludes.

2 Model specification and identification issues

2.1 Econometric specification

We specify a factor model for the standardized growth rate, yit, of series i = 1, . . . N in
period t = 1, . . . , T . The model will include both common factor (µk) and idiosyncratic
(µi) drifts terms. The specification for the growth rate yit is:

yit =
K∑
k=1

λikfkt + εit (1)

fkt = µk + ϕk1fk,t−1 + · · ·+ ϕkpfk,t−p + νkt, νkt ∼ N (0, 1) (2)

εit = µi + ψi1εi,t−1 + · · ·+ ψiqεi,t−q + ϵit, ϵit ∼ N (0, σi) (3)
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where we can see that the full deterministic process is
∑K

k=1 λikµk + µi. As mentioned,
the term µi captures the series-specific or idiosyncratic drift component of yit that is
unexplained by the common drifts µk, k = 1, . . . , K. We assume independent factor dy-
namics, and for scaling purposes, the factor-specific shocks are assumed to be independent
standard normal; νkt ∼ N(0, 1). The idiosyncratic components εit evolve independently.
Although the factors evolve independently, each series may be loaded by any factor as the
factor loadings are unrestricted.

Stack all series at time t into vectors, such that yt = (y1,t, . . . , yN,t)
′, εt = (ε1,t, . . . , εN,t)

′

and ϵt = (ϵ1,t, . . . , ϵN,t)
′ are (N×1) vectors. Next, define (K×1) vectors ft = (f1,t, . . . , fK,t)

′

and νt = (ν1,t, . . . , νK,t)
′. We gather the K common drifts µk into the (K × 1) vector µ

and the N idiosynchratic drifts µi into the (N × 1) vector µι. The model may then be
written more compactly as:

yt = λft + εt (4)

Φ(L)ft = µ+ νt, νt ∼ N (0, IK) (5)

Ψ(L)εt = µι + ϵt, ϵt ∼ N (0,Σ) (6)

where IK is the identity matrix of dimension K and Φ(L) = IK − Φ1L − · · · − ΦpL
p

and Ψ(L) = IN − Ψ1L − · · · − ΨqL
q are diagonal processes, Φj = diag(ϕ1j, . . . , ϕKj),

Ψj = diag(ψ1j, . . . , ψNj), and Σ = diag(σ1, . . . , σN). As usual in time series notation, we
introduce the expressions Φ(1) = IK −

∑p
j=1Φj and Ψ(1) = IN −

∑q
j=1Ψj.

We estimate the model without imposing rotational identification restrictions. In partic-
ular, none of the usual restrictions are imposed on the (N ×K) matrix of factor loadings;
λ = {λik}. For example, a common identification scheme would impose an upper zero
triangular structure on the matrix λ, such that λik = 0 for k > i, i = 1, . . . , K and an
identity covariance matrix for νt. This structure would define the first factor as the only
one influencing the first series, y1t, the first and second factors the only ones influenc-
ing the second series, y2t, and so on. Alternatively, a leading identity matrix, such that
λii = 1, λik = 0, i ̸= k, i, k = 1, . . . , K, would identify the leading series as distinct factors
(this would also permit an unrestricted and unknown covariance matrix for νt but still
identify the factors). Obviously, this would need a careful choice of the leading variables.
Given that this may be a difficult choice in a large, maybe heterogeneous dataset, we
estimate factor loadings without pre-determining these factor founders. This strategy
leaves the factor-specific growth rate, µk, undetermined, too. We will retrieve µk as an
average of series-specific growth rates weighted by factor loadings, i.e. factor strength. To
solve the identification issue, in the next section we re-parameterize the specification into
a non-centered representation (Papaspiliopoulos et al. 2007), and scale factor drifts in a
parameter expansion step (Liu and Wu 1999).
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2.2 Re-parametrization and extended specification

2.2.1 Non-centered series-specific trending

Define µ∗ = (IK −
∑p

j=1 Φj)
−1µ = Φ(1)−1µ and µ∗

ι = (1 −
∑q

j=1 Ψj)
−1µι = Ψ(1)−1µι

the unconditional growth rates of, respectively, factors and idiosyncratic components to
re-parameterize model (1)-(3):

yt = λµ∗ + λ(ft − µ∗) + µ∗
ι + (εt − µ∗

ι )

= λµ∗ + µ∗
ι + λ(ft − µ∗) + (εt − µ∗

ι ) (7)

(ft − µ∗) = Φ1(ft−1 − µ∗) + · · ·+ Φp(ft−p − µ∗) + νt (8)

(εt − µ∗
ι ) = Ψ1(εt−1 − µ∗

ι ) + · · ·+Ψq(εt−q − µ∗
ι ) + ϵt (9)

Representation (7) reveals that factor-specific unconditional (conditional) growth rates
µ∗ (µ) and λ are not identifiable from the data without imposing a scale identifying
restriction. We will induce scaling using parameter expansion and interweaving into
specification (7) to retrieve an update of the common growth rates as an average of
series-specific growth rates weighted by factor loadings λ.

2.2.2 A random effects model for series-specific factor growth

In the non-centered specification (7)-(9), the kth factor-driven series-specific drift, λikµ
∗
k, is

exactly proportional to the factor drift. In other words, conditional on λ, the specification
defines a pooled model for series-specific drifts. The factor-driven series-specific drift has
– up to proportionality – exactly the same drift as factors. We extend the specification
to capture a feature that we may (and in fact do) observe in data. Usually, series trend
with the factor(s), at a rate that randomly differs from the factor drifts, however.

To capture this additional feature, we may extend the non-centered pooled specification
(7)-(9) to a random effects factor growth components model:

yit = λi (µ
∗ + u∗i ) + λi(ft − µ∗) + µ∗

ι,i + (εit − µ∗
ι,i)

= λi (µ
∗ + u∗i ) + µ∗

ι,i + λi(ft − µ∗) + (εit − µ∗
ι,i) (10)

(ft − µ∗) = Φ1(ft−1 − µ∗) + · · ·+ Φp(ft−p − µ∗) + νt (11)

(εit − µ∗
ι,i) = ψi1(εi,t−1 − µ∗

ι,i) + · · ·+ ψiq(εi,t−q − µ∗
ι,i) + ϵit (12)

with λi = (λi1, . . . , λiK) and u∗i |U0 ∼ N (0, U0) a K × 1 vector of random effects, and
where µ∗

ι,i and εit correspond to, respectively, µ∗
ι,i and εit in Equation (7), purged of λiu

∗
i

(see below). The diagonal variance matrix U0 indicates the degree of heterogeneity across
series’ factor-driven drifts. Rather than fixing U0, by specifying a hierarchical prior and
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drawing proper posterior inference, we will learn from the data the degree of heterogeneity
across series-specific factor-driven drifts.

In (7), a potential a series-specific random factor-drift effect, λiu
∗
i , would be captured by

the idiosyncratic component µ∗
ι,i = µ̃∗

ι,i + λiu
∗
i . Allocating the random effect to the factor

component leads to:

yit = λiµ
∗ + λi(ft − µ∗) + µ∗

ι,1 + (εt − µ∗
ι,i)

= λiµ
∗ + λi(ft − µ∗) + (µ̃∗

ι,i + λiu
∗
i ) + (εt − (µ̃∗

ι,i + λiu
∗
i ))

= λi(µ
∗ + u∗i ) + λi(ft − µ∗) + µ̃∗

ι,i + (

ε̃it︷ ︸︸ ︷
εt − λiu

∗
i −µ̃∗

ι,i)

(ε̃it − µ̃∗
ι,i) = ψi1(ε̃i,t−1 − µ̃∗

ι,i) + · · ·+ ψiq(ε̃i,t−q − µ̃∗
ι,i) + ϵit

In Equations (10) and (12), we have re-defined µ∗
ι,i := µ̃∗

ι,i = µ∗
ι,i − λiu

∗
i and εit := ε̃it =

εit − λiu
∗
i , to keep notation unchanged.

3 Bayesian Markov chain Monte Carlo inference

The specification of independent factor dynamics spans an independent factor basis. As
factor founders remain undetermined a priori, we use a shrinkage prior on factor loadings
which induces a data-driven, self-organizing association of series to factors. Groups of
series with similar drifts and dynamics will strongly be loaded by the same factor, and
ultimately determine the interpretation of factors. In the following, we use a global-local
normal-gamma shrinkage prior (Griffin and Brown 2017), while other priors inducing
shrinkage such as the spike-and-slab (George and McCulloch 1997) or exact zeros (point
mass-normal mixture, West 2003) have also proven useful to infer a sparse, interpretable
structure of factor loadings. The normal-gamma prior is useful here, as induced distribu-
tions in the parameter expansion step can be derived straightforwardly, while these may
be more involved to derive under mixture shrinkage distributions.

We introduce additional hierarchical levels for factor and idiosyncratic drifts. A normal-
gamma shrinkage prior specification on idiosyncratic drifts reflects our prior expectation
to capture the observed drift in a series from factor drifts when the series displays a drift
that is common to a group of series. As drifts may be very different across groups of
series, specifying a factor-independent prior variance for factor drifts may necessitate an
overly diffuse prior specification. Hence, by specifying a normal-inverse gamma prior for
factor drifts we learn from data about the appropriate factor-specific prior drift variance.
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Figure 1: Marginal density of λik under a hierarchical normal-gamma prior.
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3.1 Prior specifications

Inducing shrinkage into an otherwise unrestricted factor loading matrix will ultimately
associate series of similar drift and dynamics to the same factor, and will allow us to
potentially determine the interpretation of factors. Here, we implement a hierarchical
normal-gamma shrinkage prior on factor loadings (Griffin and Brown 2017), inducing
factor-series specific local shrinkage:1

π (λik|τik) = N (0, τik) , π(τik) = G
(
a, aκ2/2

)
(13)

where the gamma hyperprior specification on τik induces a global-local shrinkage on factor
loadings. Overall shrinkage is determined by κ2, the larger κ2 the stronger the shrinkage.
For a < .5, the marginal distribution of λik has a pole at zero. Figure 1 illustrates the
marginal density of λik induced by various parameter specifications.

For the remaining parameters, we specify standard, independent distributions.

� Normal (hierarchical) distributions for parameters governing the common factor

1Additional hierarchical layers may be introduced when the dataset is high-dimensional or the factor
loading matrix expected to be very sparse (Cadonna et al. 2020).
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processes, µ = {µk|k = 1, . . . , K} and Φ = {ϕkj|k = 1, . . . , K; j = 1, . . . , p}:

π (µ,Φ|M0) =
K∏
k=1

π (µk|Mk0) π (ϕk1, . . . , ϕkp)

π (µk|Mk0) = N(m0,Mk0), π (ϕk1, . . . , ϕkp) = N(p0,P0)

π (Mk0) = IG (sM , SM)

with p0 and P0 of dimension p × 1 and p × p, respectively. The prior variance
of drifts may be fixed at Mk0 = S. However, by specifying an inverse gamma
prior, IG (sM , SM), we may learn from data about the prior variance. By using a
hierarchical specification, we avoid specifying an overly diffuse prior on factor drifts,
which may be necessary in the presence of large differences in observed drifts across
groups of series.

� A hierarchical normal distribution for random effects u∗ = [u∗1, . . . , u
∗
N ]

′, u∗i ∼
N(0, U0), U0 diagonal with elements Uk0 ∼ IG(υ0,U0), to learn from data the extent
of heterogeneity across series-specific factor-driven drifts.

� Normal (hierarchical) distributions for parameters governing the idiosyncratic pro-
cesses, µι = {µι,i|i = 1, . . . , N}, Ψ = {ψij|i = 1, . . . , N ; j = 1, . . . , q} and Σ:

π
(
µι,Ψ|M i

0

)
=

N∏
i=1

π (µι,i|Mi0) π (ψi1, . . . , ψiN)

π (µι,i|Mi0) = N(mi0,Mi0), π (ψi1, . . . , ψiN) = N(q0,Q0)

π (Mi0) = G
(
aµi
, aµi

κ2µi
/2
)

π (Σ) =
N∏
i=1

π (σi)

π (σi) = IG(s0, S0)

with q0 and Q0 of dimension q×1 and q×q, respectively. By specifying a gamma prior
on Mi0, we induce shrinkage in µι,i. This reflects our preference for a non-trending
idiosyncratic component, that is, we prefer to capture the observed series-specific
drift by some factor drifts, if the observed drift is similar to the drift of a group of
series.

Specification (2) induces a normal prior for the factors, f = (f ′
−p+1, . . . , f

′
1, . . . , f

′
T )

′,
π (f |µ,Φ) = N (f0,F0), see Appendix A.1 for implied moments f0 and F0.
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3.2 The likelihood

In analogy to factors, we collect all observations in vector y = {yit|i = 1, . . . , N, t =
1, . . . T}, or yi = {yit|t = 1, . . . N}. Parameters are collected in θ = {λ, τ , µ,M0, µι,M

i
0,Ψ,

Φ,Σ}, τ = {τik|i = 1, . . . , N ; k = 1, . . . , K}, M0 = {Mk0|k = 1, . . . , K}, M i
0 = {Mi0|i =

1, . . . , N}.

Conditional on factors f , the likelihood factorizes:

L (y|f ,u∗, θ) =
T∏
t=1

f (yt|ft,u∗, θ) , f (yt|ft,u∗, θ) =
N∏
i=1

n
(
ỹit|λif̃it + µι,i, σi

)
where ỹit = ψi(L)yit, f̃it = ψi(L) (ft + u∗i ) represent series-specific filtered values and
n(v|m, s) indicates the normal density with mean m and variance s evaluated at v.

3.3 Posterior sampler

To infer the posterior we combine the prior (Section 3.1) with the data likelihood, and
draw iteratively from

S.1. π (f |y,u∗, θ): We apply the sampler as detailed in Appendix A.1, where series are
filtered and purged from the idiosyncratic and the random factor growth effects
ỹt = Ψ(L)yt − µι − ũ, with ũ = Ψ(1) (λ1u

∗
1, . . . , λNu

∗
N)

′.

S.2. π (λ, τ |y,f ,u∗, θ) = π (τ |λ) π (λ|y,f ,u∗, θ): We apply parameter expansion to ob-
tain a joint draw of λ and series’ unconditional growth rates, see the next subsection
for a detailed derivation. Conditional on λ, we obtain an update on µ∗, which scales
factor drifts, and an update on τ :

π (τik|λik) = GIG
(
a− 1/2, aκ2, λ2ik

)
where GIG indicates the generalized inverse Gaussian distribution.

S.3. π (u∗|y,f , θ): Based on the centered specification, derive posterior moments for
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series-specific random effects π (u∗i |y,f , θ) = N (ui,Ui); and update Uk0|u∗:

ỹit = ψi(L) (yit − λift) = ψi(1)λiu
∗
i + µι,i + ϵit

with u∗i ∼ N(0, U0), µι,i ∼ N (mi0,Mi0) , ϵit ∼ N (0, σi)

Ui =
(
Tλ′iψi(1) (Mi0 + σi)

−1 ψi(1)λi + U−1
0

)−1

ui = Ui

(
λ′iψi(1) (Mi0 + σi)

−1
∑
t

(ỹit −mi0)

)

Uk0|u∗ ∼ IG

(
υ0 + .5N,U0 + .5

N∑
i=1

u∗2ik

)

S.4. π (µι,Ψ|y,f ,u∗, λ,Σ,M i
0), and π (Σ|y,f , λ, µι,Ψ) independently across equations:

For i = 1, . . . , N , based on

yit − λi (ft + u∗i ) = εit = µι,i + ψi1εi,t−1 + · · ·+ ψiqεi,t−q + ϵit, ϵit ∼ N(0, σi)

= X ′
it(µι,i, ψi1, . . . , ψiq)

′ + ϵit, X
′
it = (1, εit−1, . . . , εi,t−q)

and given prior specifications, the posterior is joint normal:

(µι,i, ψi1, . . . , ψiq)
′|yi,f , λi, σi,Mi0 ∼ N(qi,Qi)

Qi =

(
T∑

t=q+1

XitX
′
it/σi +

[
M−1

i0 0
0 Q−1

0

])−1

, qi = Qi

(
T∑

t=q+1

Xitεit/σi

)

Given a draw (µι,i, ψi1, . . . , ψiq), we update σi and draw from:

σi|yi,f , λi, µι,i, ψi1, . . . , ψiq ∼

IG

(
s0 + .5(T − q), S0 + .5

T∑
t=q+1

(εit −X ′
it(µι,i, ψi1, . . . , ψiq)

′)
2

)

Under a hierarchical prior for µι,i, we update Mi0

π (Mi0|µι,i) = GIG
(
aµi

− 1/2, aµi
κ2µi

, (µι,i −mi0)
2
)

S.5. π (µ,Φ|f ,M0) independently across factor-specific equations: For k = 1, . . . , K,
based on

fkt = µk + ϕk1fk,t−1 + · · ·+ ϕkpfk,t−p + νkt, νkt ∼ N(0, 1)

= X ′
kt(µk, ϕk1, . . . , ϕkp)

′ + νkt, X
′
kt = (1, fk,t−1, . . . , fk,t−p)

11



and given prior specifications, the posterior is joint normal:

(µk, ϕk1, . . . , ϕkp)
′|f ,Mk0 ∼ N(pk,Pk)

Pk =

(
T∑

t=p+1

XktX
′
kt +

[
M−1

k0 0
0 P−1

0

])−1

, pk = Pk

(
T∑

t=p+1

Xktfkt

)

Under a hierarchical prior for µk, we update Mk0

π (Mk0|µk) = IG
(
sM + .5, SM + .5(µk −m0)

2
)

S.6. Terminate the iteration by a random permutation ϱ = (ϱ1, . . . , ϱK) of factor position
and sign, permute accordingly factor-specific parameters. Given that factor ordering
and sign remain unidentified while sampling, random permutation enforces label
and sign switching and allows us to explore the unconstrained posterior distribution
(Frühwirth-Schnatter 2001).

3.4 Parameter expansion

We use parameter expansion to sample λ in step S.2, based on re-parametrization (10)-
(12). Observation equation (10) shows that λ is not identifiable from data, unless we
pin down factor unconditional (conditional) drifts. Gathering terms and filtering series-
specifically:

yit = λi (µ
∗ + u∗i ) + µ∗

ι,i + λi(ft − µ∗) + (εit − µ∗
ι,i) (14)

ψi(L)yit = ψi(1)

(∑
k

λik(µ
∗
k + u∗ik) + µ∗

ι,i

)
+
∑
k

λikψi(L) (fkt − µ∗
k) + ϵit (15)

ỹt = c+ Λf̃ ∗
t + ϵt (16)

where ỹt = (ψ1(L)y1t, . . . , ψN(L)yNt)
′ and f̃ ∗

t = ((ψ1(L)(ft − µ∗)′, . . . , (ψN(L)(ft − µ∗))′)′

stack series-specific filtered series, c stacks filtered series-specific unconditional growth
rates or drifts ci = ψi(1)

(∑
k λik(µ

∗
k + u∗ik) + µ∗

ι,i

)
. The matrix Λ is block-diagonal, each

row i containing row vector i of λ.

Parameter expansion allows joint sampling of λ and c independently across series. Condi-
tional on λ, we obtain an update of the unconditional factor drift µ∗ as a weighted average
over series-specific drifts, with weights determined by factor loadings. We proceed in three
steps:

12



PX.1. Equation (5) implies unconditional moments for factors, ft|µ,Φ ∼ N(µ∗,Σν∗), with
µ∗ = Φ(1)−1µ and Σν∗ implied by

vec(Σν∗) =
(
I(Kp)2 −

(
Φ̃⊗ Φ̃

))−1

vec

([
IK 0K×K(p−1)

0K(p−1)×Kp

])
,

Φ̃ =

[
Φ1, . . . ,Φp

IK(p−1), 0K(p−1)×K

]
Draw values µ∗ from

µ∗|f ,Φ,M0 ∼ N (m∗,M∗)

M∗ =
(
TΣ−1

ν∗ +M∗−1
0

)−1
, m∗ = M∗

(∑
t

Σ−1
ν∗ ft +M∗−1

0 m∗
0

)
with implied prior parameters

π (µ∗|Φ,M0) = N (m∗
0,M

∗
0) , m

∗
0 = Φ(1)−1m0, M

∗
0 = Φ(1)−1M0Φ(1)

−1′

Draw u∗i from N (0, U0).

PX.2. Mean-adjust f , f ∗
t = ft − µ∗ and update c and λ based on (16), independently

across series.

Conditional on working parameters µ∗, u∗, and Ψ(L), τ , the implied prior on ci is
normal, π (ci|µ∗,u∗, ψi(1), τi,Mi0) = N(ci0,Ci0), with ci0 = ψi(1)m

∗
i0 = mi0, Ci0 =

ψi(1)
2
(∑K

k=1 τik (µ
∗
k + u∗ik)

2 +M∗
i0

)
, with implied prior moments m∗

i0 = ψi(1)
−1mi0,

M∗
i0 = ψi(1)

−2Mi0.

Combined with observations:

ỹit = ci + λif̃
∗(i)
t + ϵit, t = 1, . . . , T

ỹi =

 1 f̃
∗(i)′
1

...

1 f̃
∗(i)′
T


︸ ︷︷ ︸

Xi

[
ci
λ′i

]
+ ϵi, f̃

∗(i)
t = ψi(L)f

∗
t

we update (ci, λi) and draw from a normal posterior

π ((ci, λi)
′|ỹi,Xi, σi) = N(li,Li)

Li =
(
X′

iXi/σi + L−1
i0

)−1
, li = Li

(
X′

iỹi/σi + L−1
i0 li0

)
where prior moments are defined accordingly:

Li0 = diag(Ci0, τi1, . . . , τiK), li0 = (ci0, 01×K)
′

13



PX.3. Conditional on λ, and c, update working parameters µ∗ based on a random effects
model for series-specific unconditional growth rates.2

Based on the regression model:

ψi(1)
−1ci = (λi(µ

∗ + u∗i )) + µ∗
ι,i

with µ∗ ∼ N (m∗,M∗) , u∗i ∼ N (0, U0) , µ
∗
ι,i ∼ N (m∗

i0,M
∗
i0)

Derive the marginal model:

ψi(1)
−1ci = λiµ

∗ + ei, ei ∼ N (m∗
i0, λiU0λ

′
i +M∗

i0)

Collect terms:

Ψ(1)−1c = λµ∗ + e, e ∼ N
(
mi∗

0 ,E
)
, E diagonal with elements λiU0λ

′
i +M∗

i0

We obtain the following updating distribution:

µ∗|e, λ = N
(
m+,M+

)
M+ =

(
λ′E−1λ+M∗−1

)−1
, m+ = M+

(
λ′E−1(Ψ(1)−1c−mi∗

0 ) + M∗−1m∗)
Add µ∗ to f ∗

t to update ft = f ∗
t + µ∗.

4 Posterior identification and interpretation

4.1 Post-processing

The sampler produces M draws from the posterior distribution. As the sampler enforces
switching of factor position and sign at the end of each iteration, the output does not
allow us to make posterior inference on factors and factor-related parameters. We proceed
as described in Kaufmann and Schumacher (2019), and also use the same settings for
grouping draws (βcorr) and determine the relevant groups (βdraws). However, here we use
draws of factors stacked with respective factor-specific draws of N loadings to determine
factor representatives. We proceed as follows:

P.1. Collect all KM stacked factor and factor loading draws,

f̄
(l)

=
(
f
(m)
k1 , . . . , f

(m)
kT , λ

(m)
1k , . . . , λ

(m)
Nk

)′
l = 1, . . . , KM ; l = k +K(m− 1), k = 1, . . . , K, m = 1, . . . ,M

2For completeness, we keep notation m∗
i0 in the following. Note that usually the prior specification

will imply m∗
i0 = 0.
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and group those into a group Jg for which absolute correlation is larger than βcorr =
.8

Jg =
{
f̄

(j)|j = 1, . . . , Ng; |corr(f̄
(j1), f̄

(j2))| > .8, ∀j1, j2 ∈ {1, . . . , Ng}
}

Retain those groups for posterior inference which contain at least βdrawsM draws,
βdraws = .8.

Sign-identify the group and define the group-specific mean or median a factor rep-
resentative, f̄g, g = 1, . . . , G, G ≤ K.

P.2. If G = K, re-order each draw (m) according to maximum absolute correlation with
factor representatives, and retain only draws with a unique assignment. Define a
permutation ρ = (ρ1, . . . , ρK) ∈ {1, . . . , K}, ρ1 ̸= . . . ̸= ρK such that:

f̄
(m)
1 , . . . , f̄

(m)
K := ρ

(
f̄

(m)
)
=

{
f̄

(m)
ρk

∣∣∣∣|corr(f̄ (m)
ρk
, f̄k)| = max

j=1,...,K
|corr(f̄ (m)

ρj
, f̄k)|

}
Adjust the sign of draws negatively correlated with the factor representative, f̄

(m)
k =

sign
(
corr(f̄

(m)
k , f̄k)

)
corr(f̄

(m)
k , f̄k), k = 1, . . . , K.

If G < K, we re-order draws such that the factors k = 1, . . . , G are the ones
highest correlated with factor representatives. Only those are retained for posterior
inference. See also the remark below. Overall, this step removes label- and sign-
switching.

P.3. Based on selected posterior statistics such as the median or mean of factor loadings,
or significant factor loadings determined by means of the 95% highest posterior den-
sity interval, we may re-determine factor position and the orientation of the factor
basis. We may re-order factors according to the number of exclusive or significant
loadings of a factor. We also may require most loadings of a specific factor to be
positive, sign-adjust draws of factors, factor loadings and factor-specific parameters
accordingly.

Remark to P.1: Highly correlated draws of factors and factor loadings represent draws
from the same posterior distribution. If all fitted K factors are relevant to capture data
dynamics, we should be able to identify G = K groups of M draws each. Nevertheless,
the number of draws to identify a group is set to less than M , βdrawsM , to account for
the fact that some posterior distributions may overlap, and hence some draws may not be
clearly assigned to a group. If a model overfits the number of factors, G < K, overfitted

factors and factor loadings, f̄
(l∗)

, will be drawn from the prior distribution as there is no
information in the data for updating. These draws will only be loosely (cross-)correlated

and not assigned to nor forming a relevant group, i.e. either |corr(f̄ (l∗)
, f̄

(j1))| < .8, for
any j1 ̸= l∗, or Ng∗ ≤ βdrawsM for Jg∗ collecting draws of over-fitting factors. On the
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other hand, if a model underfits the relevant number of factors, potentially G > K and
groups should collect maybe even less than βdrawsM posterior draws each. Ultimately,
this step determines the number of factors. This suggests it is reasonable to start out
with a model potentially overfitting the number of factors and reducing it, until G = K
factor representatives are extracted from posterior draws.

4.2 Trend components

The sorted MCMC output lends to posterior evaluation like interpretation of factor means
or determining factor founders based on large, non-zero factor loadings. Given yt is ex-
pressed in growth rates, for some applications it may be of interest to derive factor-driven
(Ft) or idiosyncratic (Eit) trend components of the level series Yt using the Beveridge-
Nelson decomposition (Beveridge and Nelson 1981).

Ft = Φ(1)−1

(
µt+

t∑
t=1

νt

)

Eit = ψi(1)
−1

(
µι,it+

t∑
t=1

ϵit

)
To adjust to the volatility of series, multiply with series-specific standard deviations,
s = (s1, . . . , sN), si =

√
1/T

∑
t(yt − ȳ)2, ȳ = 1/T

∑
t yt. For specification (1) we obtain

the series-specific decomposition:

s⊙ yt = s⊙ λft + s⊙ εt

ft = µ+ Φ1ft−1 + · · ·+ Φpft−p + νt

εt = µi +Ψ1εt−1 + · · ·+Ψqεt−q + ϵt

Yit = siλiΦ(1)
−1

(
µt+

t∑
j=1

νt

)
︸ ︷︷ ︸

τfit: factor trend

+ siψi(1)
−1

(
µι,it+

t∑
j=1

ϵit

)
︸ ︷︷ ︸

τsit: idiosyncratic trend

+Yi0 + cycleit

For the model with random effects (10), the decomposition is:

Yit = siλi

(
(u∗i + Φ(1)−1µ)t+ Φ(1)−1

t∑
j=1

νt

)
︸ ︷︷ ︸

τfit: factor trend

+ siψi(1)
−1

(
µι,it+

t∑
j=1

ϵit

)
︸ ︷︷ ︸

τsit: idiosyncratic trend

+Yi0 + cycleit

These decompositions may be useful to derive a specific aggregate from disaggregate
components. Note that we may also derive factor-specific trend components in a similar
way. When factors are correlated or factor dynamics more general, upon identification
structural shock-specific trend components may be compiled.
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5 Illustrations

5.1 Data and specifications

For illustration, this section estimates the model for three sets of yearly data, which display
considerable persistence and a trending behaviour. The series for each of the three data
sets are plotted in Figure 2 in, respectively, panels (a), (b) and (c). We first revisit the
data used in Bai (2004)3. Panel (a) plots the sixty yearly series from Bai (2004), spanning
1948 to 2000, of U.S. sectoral employment (Full-time equivalent workers). The data are
ordered by the level in 2000, and we observe that while most of the series display an
upward trend, some of them are trending negatively. Next, we fit the model to a balanced
panel of N = 111 yearly real GPD per capita series, running from 1960 to 2019 (Panel
(b)).4 The data corresponds to a sub-sample of data used in Müller, Stock, and Watson
(2022), who extract a series-specific low-frequency trend factor from an unbalanced sample
covering the years 1900 to 2017. Figure 2 (b) plots the series in log levels, ordered in levels
as of 2019. With few exceptions, countries in 2019 ended up with a higher per-capita real
GDP level than in 1960.5 Finally, we will estimate the model for a challenging dataset,
plotted in Panel (c) of Figure 2. The data includes relative capital goods prices grouped
into two broad classes: ICT and Non-ICT prices. Subcategories consist of Equipment and
Structures, Residential (R), Non-residential (N) and Consumer durables (C). The dataset
has been used in Eden and Gaggl (2019), who show that capital composition matters to
disentangle the sources of the decreasing labor income share in the United States.6 The
left panel plots the logarithm of all N = 108 yearly series spanning the period 1982 to
2018, while the right panel zooms in by excluding the series with extraordinary initial
(relative) price levels. Obviously, there is a lot of heterogeneity across data trends, where
some series display an overall decrease in prices of 99% while others reach an increase in
prices of more than 200%.

To determine the number of factors in each data set, we proceed as discussed in Subsection
4.1. We capture factor dynamics by setting p = 1, and present results for q = 0.7 As
series do not trend in exact proportion, we allow for heterogeneity across series-specific

3They are available at https://www.bea.gov/data/employment/employment-by-industry, and we con-
catenate data from Table 6.5B and 6.5C.

4Data available at https://www.rug.nl/ggdc/productivity/pwt/pwt-releases/pwt100.
5The countries with a lower real GDP per capita level were, ranking from largest to weakest decrease,

the Democratic Republic of the Congo, the Central African Republic, Venezuela, Madagascar, Haiti, the
Niger, the Gambia, and Guinea-Bissau, of which the first six rank within the poorest ten countries as of
2019.

6We thank Maya Eden and Paul Gaggl for providing us with the data set.
7Qualitatively, results do not change substantially when idiosyncratic dynamics are set to q = 1. The

idiosyncratic component gets more weight for some series, though. This leads to a much better fit of
data.
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factor-driven trends by estimating a random effects specification for factor-driven drifts,
see Subsection 2.2.2.

We set equal hyperparameters across applications. For factor processes we set m0 = 0,
sM = 3 and SM = .18, which induces a mean and variance for Mk0 of, respectively, .09
and .01, or a 95% highest density interval (HDI) of (0.02, 0.22); p0 = 0 and P0 = cIK
diagonal with c = .16. The prior for random effects is specified with υ0 = 3, U0 = .5,
which induces a mean and variance for prior heterogeneity Uk0 of, respectively, .25 and
.0625, or a 95% HDI of (.04, .62). For idiosyncratic drifts, we specify mi0 = 0, aµi

= 0.75
and κ2µi

= 8. This induces a mean and variance of, respectively, .25 and .08, or a 95%
HDI of (0, .83), for Mi0. The inverse gamma prior on σi is rather diffuse, specified with
s0 = 2 and S0 = 1, inducing a prior mean of 1 and no second moment.

To obtain posterior inference, we run a first chain of 11,000 iterations, then obtain five
new starting values by applying five random orthogonal rotations to the factor loading
matrix and factor-specific parameters. With these, we run five parallel chains of 11,000
iterations. We discard the 6,000 initial values from each chain, which leaves us with 30,000
iterations for posterior evaluation.
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Figure 2: Data. (a) Log of sectoral employment ordered by the level in 2000; (b) Log of
real per capita GDP ordered by the level in 2019; (c) Log prices of capital goods (left),
zoom-in, excluding series with initial level above 1.2 (right).
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5.2 Sectoral employment

For sectoral employment data, we identifyK = 3 factors that adequately capture common
data trends. Figure 3, Panel (a), plots the posterior median of factor trend components
with a 50% highest posterior density interval (HPDI). Factor 2 compares well to the
linear combination of factors rotated towards total employment in Bai (2004) (ibid. Figure
6). The correlation of total employment growth with our extracted factor trend growth
amounts to roughly .90. In addition, Factor 1 accomodates a structural break in the level
of some series, while since 1980 Factor 3 captures a decreasing employment trend in some
sectors. Panel (b) of Figure 3 illustrates the amount of heterogeneity estimated across
series-specific factor-driven trends. The boxplots suggest that heterogeneity is particulary
present for Factor 3.

Figure 4, Panel (a), displays a heatmap of mean factor loadings. Inducing shrinkage
identifies well those factors loading most strongly on each series. Panel (b) visualizes
factor-series association for loadings shifted away from zero (based on a 95% HPDI) by
a circos plot (Krzywinski et al. 2009).8 Employment in the manufacturing, mining and
agricultural sectors are mainly driven by Factors 2 and 3. On the other hand, Factor 1
loads mainly on employment in the services, finance, trade and transportation sectors.

Finally, Figure 5 plots the posterior median trend components along with the data series
for employment in selected sectors. As example, Factor 1 (2, 3) is the strongest loading
on employment in the banking sector (Printing and publishing, Metal mining), whereas
Factor 1 (2) loads negatively (positively) on Stone, clay, and glass products. Note how-
ever, that loadings can be interpreted in absolute values, as a sign-switch of negative
loadings can be adjusted by re-scaling the series-specific random error. This is a further
advantage of a factor-driven drift with random error model.9 Overall, the factor-driven
trend component (red) follows quite closely the data series. When we add the idiosyn-
cratic trend components (yellow), we obtain the overall series-specific trend component
(purple). The purple line virtually matches observed data (blue), which confirms a very
good fit of observed data.10

8The size of the factor blocks corresponds to the number of non-zero factor loadings, while the thickness
of the chord end is proportional to the importance of the common component (the sum over the absolute
posterior mean factor loadings).

9Negative loadings may be interpreted in absolute values, when we adjust the series-specific error
term:

λ̃ik = −λik

λik(µ
∗
k + uik) = λ̃ik(−µ∗

k − uik) = λ̃ik(µ
∗
k + ũik)

where ũik is determined by

−µ∗
k − uik = µ∗

k + ũik ⇒ ũik = −2µ∗
k − uik

10We plot the series-specific cyclical components in Figure B.12, Panel (a) of Appendix B. They display
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Figure 3: (a) Posterior median factor trend components with 50% HPDI interval; (b)
Boxplot of mean series-specific random effects u∗ (uik) and series-specific factor-driven
unconditional growth rates µ∗ + u∗ (µ∗

k + uik)

(a) Factor trend (b) Random effects

no remaining trending behavior.
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Figure 4: Sectoral employment: Panel (a): Heatmap of posterior mean factor loadings;
Panel (b): Series-factor association based on non-zero loadings according to a 95% HPDI.
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Figure 5: Selected sectors: Data (blue) and posterior median stochastic trend component
(Factor-driven in red, idiosyncratic in yellow, total in purple). In parentheses the factor(s)
most strongly determining the series (According to loadings shifted away from zero on
the basis of a 95% HPDI).
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5.3 GDP per capita

For real GDP per capita series, we extract two factors, see Figure 6. The left panel
shows that the first factor reflects well the recession in the 1970s and the great financial
crisis in 2008/2009, as well as the milder episodes at the beginning of the 1980s, 1990s
and 2000s. Over the long run, this factor also reflects an overall slowdown in growth.
The second factor displays a significant drop during the recession of the 1980s, after
which growth recovered strongly. This contrasts developments after the financial crisis,
as growth steadily slowed down until 2019. Panel (b) shows how this translates into factor
trend components. The converging trend of Factor 2 came to a halt after 2010. Since
then, both trend components evolve according to σ-convergence.11

The different factor growth paths suggest that the first factor should load mainly on de-
veloped countries while the second factor should affect mainly developing or emerging
market countries. Figure 7 visualizes mean factor loadings (Left panels) and mean fac-
tor loadings shifted away from zero according to a 95% HPDI (Right panels). Indeed,
“non-zero” loadings reveal that Factor 1 mainly drives developed countries, while Factor
2 mainly loads on developing countries. As examples, we plot the trend decomposition for
various countries in Figure 8. As shown in Figure 7, the United States are mainly loaded
by Factor 1. In Panel (a) of Figure 8 we see that the factor-driven median trend compo-
nent follows closely the level series, whereas the idiosyncratic median trend component
captures a minor share of the data trend. China is not strongly loaded by either factor.
Nevertheless, the factor-driven component trends upwards (red). However, from 1980
onwards, the factor component is not strong enough to capture the accelerating growth in
the level series, and an increasing share is taken up by the idiosyncratic trend component
(yellow). Venezuela and the Gambia are two countries which end up with a lower real
per capita GDP level than in 1960. In both countries, the idiosyncratic trend compo-
nent captures the bulk of level dynamics, as their economic developments depart strongly
from those captured by extracted factors. Overall, it is again the case that the sum of
factor-driven and idiosyncratic trend components matches well observed data series.12

11See also Canova (2004).
12The series-specific cyclical components are plotted in Figure B.12 of Appendix B.
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Figure 6: Real per capita GDP. Extracted factors.

(a) Mean factors (95% HPDI) (b) Median factor trend components (50% HPDI)

Figure 7: Real per capita GDP: Posterior mean factor loadings.

(a) Factor 1 (b) Factor 1, non-zero (95% HPDI)

(c) Factor 2 (d) Factor 2, non-zero (95% HPDI)
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Figure 8: Selected countries: 100 times the log level of the original series (blue) and pos-
terior median stochastic trend component (Factor-driven in red, idiosyncratic in yellow,
total in purple). In parentheses the factor most strongly determining the series (According
to loadings shifted away from zero on the basis of a 95% HPDI).
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5.4 Relative capital goods prices

Despite the large heterogeneity across observed series trends, as few as K = 3 factors
capture well data dynamics in levels. Figure 9, Panel (a) plots the posterior median along
with a 50% HPDI. The factors capture well the different trending patterns of series. Factor
1 is the one that captures the strong and steady decline in relative prices observed for
some series. Heterogeneity across series-specific factor-driven drifts is largest for this factor
(Panel (b)). The circos graph in Figure 10, Panel (a), associates Factor 1 mainly with
ICT goods and equipment for consumer durables. Factor 2 loads mainly on structures,
non-residential and residential as well, and displays an overall increase in prices (Figure
9, Panel (a)). The factor captures a strong increase in prices during the build-up of the
house price bubble from 2004 to 2008, and the subsequent collapse in 2008/2009 coincides
with the great financial crisis. The third factor captures an overall mild decrease in
prices, showing a transitory increase during the build-up of the house price bubble and
three more years (2004 to 2009). The circos graph reveals that Factor 3 loads on non-
residential equipment and some, mainly non-residential, structure series. The different
blocks of series loaded by respective factors are also reflected in the heatmap of posterior
mean factor loadings (Figure 10, Panel (b)).

Finally, Figure 11 plots selected series along with there median trend components. The
factor-driven trend component (red) captures quite well the series-specific trending behav-
ior. In some cases, the idiosyncratic trend component (yellow) takes up a persistent level-
adjusting share, see the top panels in the figure. In other cases, depicted in the bottom
panels, the idiosyncratic component adjusts for transitory deviations of the factor-driven
trend component from the level of observed data. Overall, the total trend component
(purple) again provides a good fit to the data.
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Figure 9: Capital goods prices. Panel (a): Posterior median factor trend components
with 50% HPDI interval; Panel (b): Boxplot of mean series-specific random effects u∗

(uik) and series-specific factor-driven unconditional growth rates µ∗ + u∗ (µ∗
k + uik)

(a) (b)

28



Figure 10: Capital goods prices. Panel (a): Series-factor association based on loadings
shifted away from zero according to a 95% HPDI; Panel (b): Heatmap of posterior mean
factor loadings.

OD50

RGCA

RGCS

ENS1

EP1D
EP1E
EP20
EP35
EP36
FH11
FH12
FH14
FH20

FH30
MV10MV20

MV30
OD20OD40RG11RG12RG31RG40EI11EI12EI22EI30EI40EI50EI60EO

11

E
O

12

E
O

21

E
O

22

E
O

30

E
O

40

E
O

50

E
O

60

E
O

71

E
O

80

E
T

11
E

T
20

E
T

30E
T

50
A

E
10

A
E

20
A

E
40

S
B

10

S
B

20

S
B

31

S
B

32

S
B

41S
B

42S
B

43SB
45SB

46SC
01SC02SC03

SC04
SI00SM01SM02SN00SO01SO02

SO03
SO04SOMO

SOO1
SOO2
SU30
SU40
SU50

RRAA

RRCC

RRFF

RRMH

RRMR

RROS

IC
T

 C
IC

T
 N

C tne
mpiuq

E

N tnempiuqE
ytreporP .letnI

N 
seurt

cu
rt

S

S
tr

u
ct

u
re

s 
R

 

  F
1

 

  F2

 

  F3

1 2 3

Factors

ICT

Equipment

Intellectual Property

Structures

-1

-0.5

0

0.5

1

(a) Circos for non-zero loadings (95% HPDI) (b) Mean loadings

29



Figure 11: Capital goods prices. Selected series: 100 times the log level of the origi-
nal series (blue) and posterior median stochastic trend component (Factor-driven in red,
idiosyncratic in yellow, total in purple). In parentheses the factor(s) most strongly (sig-
nificantly) determining the series.
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6 Conclusion

Much work to date has considered the dynamics and common stochastic trends in mul-
tivariate systems. However, there are sound economic arguments for studying the de-
terministic trends that drive many series, an area of investigation that is precluded by
approaches that difference and de-mean the data prior to analysis. This paper presents
an approach to extract common and idiosynchratic deterministic components from many
series using a dynamic factor model and so addresses a little studied area in the literature.

The specification of the factor model allows us to extract and identify multiple drifting fac-
tors from high-dimensional data series displaying a common long-run deterministic drift.
A general specification captures data features in a flexible manner. We do not restrict
the idiosyncratic component to be stationary, as series, though trending in common, may
not be cointegrated. As factor-specific drifts may not account for all series-specific drift,
we allow for a series-specific factor-driven drift, modelled as a factor drift with series-
specific random effects. Remaining idiosyncratic drift is captured by a potential drift in
the idiosyncratic component.

In applying this approach to sectoral employment data, we are able to obtain new results.
We clearly visualize heterogeneity of factor drifts with considerable dispersion of the effect
of the factor capturing declining employment since 1980. In a study of GDP growth rates
of many countries, we are able to distinguish between trends in developed countries and
those in developing countries. Finally, in application to relative capital goods prices,
factors driving groupings of goods were identified along with the degree of heterogeneity
in each group. In each application, we find evidence for a new characterisation for the
factors and both the stochastic and deterministic processes driving the data. The precision
of the results is achieved through a judicious approach to shrinkage and use of parameter
expansions to avoid identifying restrictions that could distort inference.

Improved characterisation of factors driving economic processes leads to better under-
standing of a range of economic questions. Although we do not consider it in this paper,
it is likely that the more precise estimation of factors within a flexible range of processes
will improve forecasts and structural analysis.
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the parametrization of hierarchical models. Statistical Science 22, 59–73.

Sims, C. A., J. H. Stock, and M. W. Watson (1990). Inference in linear time series
models with some unit roots. Econometrica 58, 113–144.

Stock, J. and M. Watson (1989). New indexes of coincident and leading economic
indicators. In O. Blanchard and S. Fischer (Eds.), NBER Macroeconomics Annual,
pp. 351–409. Cambridge, Mass.: MIT Press.

Stock, J. and M. Watson (2002a). Forecasting using principal components from a
large number of predictors. Journal of the American Statistical Association 97,
1167–1179.

Stock, J. H. and M. W. Watson (1988). Variable trends in economic time series. Journal
of Economic Perspectives 2, 147–174.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic forecasting using diffusion
indexes. Journal of Business & Economic Statistics 20, 147–162.

West, M. (2003). Bayesian factor regression models in the ”large p, small n“ paradigm.
Bayesian Statistics 7, 723–732.

33



A Posterior distributions

A.1 The factors f

To derive the posterior, we condense the right-hand specification of (4) in Section 2 and
cast it into the state space representation:

Ψ(L)yt − µι = ỹt = λft − λ⊙ (ψ·1 ⊗ 11×K) ft−1 − · · · − λ⊙ (ψ·q ⊗ 11×K) ft−q + ϵt

ϵt ∼ N (0,Σ) , Σ diagonal

ft = µ+ Φ1ft−1 + · · ·+ Φpft−p + νt, νt ∼ N (0, Ik)

where ψ·j stacks all lag j-specific coefficients ψij, i = 1, . . . , N , ⊙ and ⊗ represent the
Hadamar and the Kronecker product, respectively. The row vector 11×K contains as
elements K ones. We stack the observations into the matrix representation:

ỹ = Λf + ϵ, ϵ ∼ N (0, IT−q ⊗ Σ) (17)

Φf = µ+ ν, ν ∼ N (0,S) (18)

where ỹ = (ỹ′1, . . . , ỹ
′
T )

′ contains all observed data, f =
(
f ′
q+1−max(p,q), . . . , f

′
q+1, . . . , f

′
T

)′
stacks all unobserved factors, including initial states. The matrices Λ and Φ are respec-
tively of dimension (T −q)N× (T + d)K and square (T +d)K, with d = (p−q)I {p > q}.
Typically, these matrices are sparse and banded around the main diagonal:

Λ =

 −λ⊙ (ψ·q ⊗ 11×K) . . . λ 0 . . . 0

0(T−q)N×dK
. . . . . . . . .

...
0 . . . 0 −λ⊙ (ψ·q ⊗ 11×K) . . . λ



µ =

[
1p×1 ⊗ Φ(1)−1µ
1(T+d−p)×1 ⊗ µ

]
, Φ =


Ip ⊗ IK 0 . . .

− Φp . . . −Φ1 IK 0 . . .
. . .

. . . 0 −Φp . . . −Φ1 IK

 ,

S =

 Ip ⊗ Σ0
ν 0 . . .

0
... IT+d−p ⊗ IK


where Σ0

ν represents the variance of the initial states (see below).

We adapt the sampler proposed in Chan and Jeliazkov (2009) to sample f in one sweep.
Given the representation in (17)-(18), the complete data likelihood has a normal density

f (ỹ|f , θ) ∼ N (Λf , IT−q ⊗ Σ) (19)
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For the unobserved states, from (18) we obtain the following prior:

f |θ ∼ N (f0,F0) (20)

F−1
0 = Φ′S−1Φ

f0 = Φ−1µ

If in S, the variance of the initial states, Σ0
ν , is not chosen to be diffuse, we may set it equal

to the implied unconditional factor variance. From the companion form of a VAR(p) pro-

cess, Ft = Φ̃Ft−1+νt, νt ∼ N

(
0,

[
IK 0K×(p−1)K

0(p−1)K×pK

])
, with Φ̃ =

[
Φ1, . . . ,Φp

IK(p−1), 0K(p−1)×K

]
,

we obtain E(FtF
′
t) = Φ̃E(Ft−1F

′
t−1)Φ̃

′
+ Σν and ΣF = Φ̃ΣFΦ̃

′
+ Σν . The vec operator

yields

vec(ΣF) =
[
I(Kp)2−(Φ̃⊗ Φ̃)

]−1

× vec (Σν)

from which we can retrieve the corresponding values for Σ0
ν .

Combining the prior with the likelihood, the posterior of the factors is:

f |ỹ, θ ∼ N (f,F) (21)

F−1 = F−1
0 +Λ′ (IT−q ⊗ Σ−1

)
Λ

f = F
(
Λ′ (IT−q ⊗ Σ−1

)
ỹ + F−1

0 f0
)

To avoid the full inversion of F−1 we take the Cholesky decomposition, F−1 = L′L, then
F = L−1L−1′. We obtain a draw f by setting f = f+L−1ν, where ν is a (T + d)k vector
of independent draws from the standard normal distribution.

B Additional figures
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Figure B.12: Mean series-specific cyclical components (Difference between the series and
the total trend component)

(a) Sectoral employment (b) Real per capita GDP

(c) Capital goods prices

36



Figure B.13: Unconditional series-specific growth rate against unconditional, respectively,
factor-driven and overall trend-driven mean growth rate.
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