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1 Introduction

For economic studies using quarterly data, a low number of observations can cause
serious °aws in the quality of quantitative analysis. In vector autoregressions
(VAR) with relatively short time series for example, many degrees of freedom
are used up in the estimates, reducing drastically the power of the estimation.
Moreover, monthly frequency is sometimes implied by the assumptions of the
model being estimated, while only quarterly data are released. Estimates of
Swiss gross domestic product (GDP) for every quarter are dating back to 19651.
Therefore, economists are sometimes forced to use variables that proxy GDP

and that are available at a higher frequency. A common proxy in many countries
is industrial production (IP) which is often recorded monthly and which comoves
closely with GDP. In Switzerland, it is di±cult to ¯nd such a monthly indicator
for aggregate productive activity. The IP index is a series at a quarterly frequency,
and other series like business surveys or ¯lled orders can only be used as GDP
proxies with strong reservations on the interpretation. Hence, in cases where
adequate proxies are not at hand, monthly estimates of GDP by interpolation2

can provide a solution to this problem.
Whether to replace a proxy variable by an interpolated one or not depends on

the available data series and on the empirical economic model considered. The
evaluation of the trade-o® between the potential bene¯ts and disadvantages of
both approaches is beyond the scope of this paper and is omitted. The goal of
this paper is to provide a monthly deseasonalized3 real GDP series for empirical
research.
Chow and Lin [1971] were the ¯rst to present a coherent and easily applica-

ble econometric approach that handles interpolation problems for stock and °ow
variables. Assuming a linear relation between the series of interest (series for
which observations are missing, i.e. monthly GDP) and other data with more
frequent recording (related series), they estimate a univariate regression equa-
tion. This multiple regression approach is °exible enough to take into account
heteroskedasticity and autocorrelation in the residuals.
More recent approaches make use of the Kalman ¯lter (Harvey and Pierse

1The o±cial ¯gures concerning the quarterly GDP are published by the Federal O±ce for
Economic Development and Labour. Furthermore, an o±cial annual GDP is calculated by the
Federal Statistics O±ce producing the national income accounts. The quarterly estimates are
then corrected and published again to match the o±cial annual statistics.

2We understand interpolation as a process of computing °ow or stock series at a higher
frequency than the original one. In this terminology we do not distinguish between interpolation
and distribution which is often done in studies with both, stock and °ow variables. Here, we
present models that serve exclusively for interpolation and not for out-of-the-sample predictions.

3In our view, deseasonalized time series are of greater interest as they are handy to use in
economic models. To estimate a seasonalized series, the seasonality would have to be estimated
separately and then added to the deseasonalized series, as done for example by the Federal
O±ce of Economic Development and Labour for quarterly GDP estimates.
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[1984], and Bernanke, Gertler and Watson [1997]). This dynamic framework is
much more °exible, since it is capable of nesting various models and is more
promising because the ¯rst estimates are updated as new information arrives.
In this paper, the focus is directed on econometric details such as the issue of

stationarity and cointegration in di®erent Kalman ¯lter con¯gurations. Recent
innovative techniques are analyzed theoretically and then evaluated empirically.
An overview of estimated monthly GDP series produced by various model setups
is provided. We evaluate di®erent combinations of methods and related series
with the aim to get the most appropriate monthly GDP. For this task, several
selection criteria as well as a simulated interpolation from annual to quarterly
data are used.
Before estimating the model, we evaluate competing related series. We iden-

tify the series containing the highest amount of information for the interpolation.
The choice criteria for the related monthly series are based on the expenditure
de¯nition of GDP and on statistical properties of the comovement with GDP.
However, the dearth of Swiss data at higher frequency limits severely the choice
of these variables. Therefore, we consider other related series, for example, for-
eign aggregate economic activity, as alternatives for interpolation. In fact, all
related series that closely and robustly move together with quarterly GDP could
be appropriate series helping to extract monthly GDP. With these related se-
ries available, it is then possible to estimate monthly GDP for Switzerland for
1980-19984 in di®erent model setups.
The paper is organized as follows. It starts in Section 2 with a short survey

of the interpolation literature. In Section 3, we brie°y review the Kalman ¯lter
methodology. The di®erent interpolation models are presented. In Section 4,
various related series are evaluated and described. An overlook of the results is
given in Section 5. We then evaluate the appropriateness of these interpolations.
Section 6 concludes.

2 Related Literature

As Lanning [1986] illustrates, economists facing missing data have basically two
di®erent ways to solve that problem. A ¯rst approach is to estimate the missing
data simultaneously with the model parameters, thereby considering the missing
observations as any other parameters. The second way is a two-step approach
where in a ¯rst step the missing data, which could be independent from the

4We exclusively concentrate our investigation on the period 1980-1998 because these ¯gures
are compatible with the new national accounting system in Switzerland, the European System
of National Accounting (ESNA) 78. In Switzerland it was introduced in 1996, but the Federal
O±ce for Economic Development and Labour calculated quarterly GDP ¯gures back to 1980.
See Schwaller and Parnisari [1997] for a very good survey. The structural break is too important
between the former and new system for not considering it.
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economist's model, are interpolated. In a second step, the new augmented series
are used to estimate the economist's model. Lanning found that the simultaneous
approach yields estimates of the economist's model parameters that have a greater
variance and thus are less reliable than the model parameters estimated with
complete data in the second stage. Based on these empirical ¯ndings, he suggests
the use of the two-step approach. Related literature on the latter procedure can
be subdivided in the following three classes5.
First, the seminal approach for the use of the univariate multiple regression

technique with related series was established by Chow and Lin [1971] and [1976]
who presented a uni¯ed framework which allows to treat the interpolation of
stocks and °ows variables. This approach was able to overcome the problems
faced by Friedman [1962] who treated stocks and °ows in di®erent ways. Specif-
ically, they could deal with the requirement that if an observed °ow value is dis-
tributed among the corresponding subintervals, the higher frequency estimates
must add up to the observation of the original lower frequency variable. Until
now, this static regression approach has been widely used for interpolation due to
its easy implementation compared to the state-space approach. This argument
seems to more than just outweigh the potential advantages of more sophisticated
procedures like the Kalman ¯lter. An annual GDP was for example interpolated
for Mexico by De Alba [1990]. Schmidt [1986] gives a good survey of this method
interpolating personal income of US regions.
Second, still with related series, Denton [1971], Fernandez [1981], and Litter-

man [1983] proposed an approach that minimizes a weighted quadratic loss func-
tion on the di®erence between the series to be estimated and a linear combination
of the observed related series. This strategy nests the Chow and Lin regression,
but allows for more complicated assumptions about the driving process of the
interpolated variable and the use of data in ¯rst di®erence. An illustration with
Portuguese data is given in Pinheiro and Coimbra [1993].
Third, Bernanke, Gertler and Watson [1997] have recently used a state-space

model to interpolate real GDP in the US. Their approach is to ¯rst estimate
monthly components of nominal GDP and the GDP de°ator and then to ag-
gregate the individual estimates. The lack of data in Switzerland prevents us
from disaggregating GDP for our interpolation. The methodology they followed
was suggested by Harvey and Pierse [1984] who provide a general framework
- state-space formulations for stock and °ow variables, and for stationary and
non-stationary series, with and without related series - to estimate missing ob-
servations in economic time series. Solving such state-space models requires the
use of the Kalman ¯lter. A Kalman ¯lter interpolation has also been done for
Canadian GDP by Guay et al. [1990].

5The signal extraction literature is very vast and di±cult to objectively classify. Here, we
only review the interpolation literature, without considering general approaches such as the
problem of unobserved components in economic time series or the estimation of irregularly
missing data.
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Hereafter, we present a state-space framework introduced by Harvey and
Pierse [1984]. This formulation allows us to rewrite models using related se-
ries following Chow and Lin [1971], Denton [1971], Fernandez [1981], Litterman
[1983], Bernanke, Gertler and Watson [1997], and simpler models that do not use
related series.

3 Models

3.1 Kalman Filter

To extract unobserved variables is a common problem in economics. One useful
method for extracting signals is to write down a model linking the unobserved and
observed variables in a state-space representation according to Kalman [1960] and
[1963]. The multivariate Kalman ¯lter is an algorithm for sequentially updating
a linear projection on the vector of interest. A general review is given here and a
more detailed description in the appendix6. We present the various con¯gurations
of the state-space system we use in the next section on interpolation models.
The state-space representation is given by a system of two vector equations.

First, the state or transition equation describes the dynamics of the state vector
(»t) containing the unobserved variables we want to estimate. The second type
of equation represents the observation or measurement equation linking the state
vector to the vector containing the observed variables

¡
y+t

¢
. The equations of

this system for t = 1; : : : ; T where T is the number of monthly observations are
the following:

»t+1 = Ft»t +C
0
txt+1 +Rtvt+1 (1)

y+t = A0
tx
¤
t +H

0
t¢»t +Ntwt (2)

In addition to the unobserved and the observed variables of interest, vector
equations (1) and (2) contain the so-called related series (xt) and (x

¤
t ) as exoge-

nous variables in each equation. Both equations have error terms multinormally

distributed:

µ
vt
wt

¶
» N

µµ
0
0

¶
;

µ
Q 0
0 G

¶¶
. Premultiplied by matrices Rt

and Nt, these orthogonal disturbances transform into non-orthogonal residuals
within each vector equation. The coe±cients matrices Ft; C0t; Rt; A0

t; H
0
t; Nt;

and the two variance-covariance matrices Q and G are estimated by maximizing
the log-likelihood function of this system.

6Very detailed descriptions of the Kalman ¯lter technique can be found in the Handbook of
Econometrics by Hamilton [1994] and in his textbook [1994a]. Other useful contributions can
be found in Aoki [1991], Harvey [1989], and LÄutkepohl [1993].
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3.2 Interpolation Models

3.2.1 Overview

In this section, we adapt the general state-space representation7 (1) and (2) to
our problem in di®erent ways, speci¯cally the inclusion of related series and
assumed stochastic processes for monthly GDP. The interpolation framework8

for t = 1; : : : ; T is:

»t+1 = F»t +C
0xt+1 +Rvt+1 (3)

y+t = a0tx
¤
t + h

0
t¢»t (4)

On one hand, the state vector equation (3) describes the vector dynamics
of the unobserved variable, monthly GDP (yt), stacked in the state vector »t
=

¡
yt yt¡1 yt¡2

¢0
. The [3£ 1] dimension serves to take the three months

within a quarter together in order to satisfy the sum-up constraint. The exact
formulation of this vector equation is di±cult, because there is no prior knowledge
about the true process driving monthly GDP. In order to shed light on this
issue, we compare various assumptions in section 5. We assume time-invariant
coe±cients for the matrices F; C0; and R.
On the other hand, equation (4) relates the state vector to the observed quar-

terly GDP (y+t ). Following Harvey and Pierse [1984], this observation equation
represents the constraint that the sum of three monthly observations within a
quarter must equal the quarterly observed GDP. Hence, this equality constraint
implies that the error term disappears (Ntwt) from the observation equation. The
sum-up constraint is introduced by the coe±cients vector a0t and h

0
t depending

on the models in the following subsection9.
All the speci¯cations of the state-space models described hereafter correspond

to di®erent assumptions depending on the characteristics of the data to interpo-
late (driving process and stationarity) and whether related series are used or
not. The properties of the data such as the order of integration and the stochas-
tic process of monthly GDP in°uence the representation of the state equation.
Possible related series in°uence the setup of the state vector equation and the

7The Kalman ¯lter algorithm and the derivation of the log-likelihood function are displayed
in Appendix A.

8In all the models, quarterly GDP
¡
y+

t

¢
is given each month, y+

1 = 0; y+
2 = 0; y+

3 = ¯rst

quarterly value, y+
4 = 0; y+

5 = 0; y+
6 = second quarterly value, y+

7 = 0; : : : , etc. Note that
with T months to interpolate we observe T

3 quarterly values. But contrary to the convention
when we stack the quarterly observations in one column vector to get y+, we do not include
zero observations resulting thus in a vector of size

£
T
3

£ 1
¤
.

9Another alternative not treated in this text to introduce the sum-up constraint is to
augment the state space representation with a "cumulator function" (yc

t ), which accumu-
lates monthly GDP observations in a given quarter: yc

t =
Pr

s=0 yt¡s where r = 0 for
t = 1; 4; 7; : : : ; T ¡ 2, r = 1 for t = 2; 5; 8; : : : ; T ¡ 1, and r = 2 for t = 3; 6; 9; : : : ; T: See
Harvey [15] for more details.
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observation equation to in turn a®ect the coe±cients contained in C0 and a0t. We
add related series in order to evaluate their statistical relevance. The selected
assumptions are also guided by simplicity and technical considerations of the
construction of the Kalman ¯lter.
Hence, we focus on two broad classes of Kalman ¯lter models summarized in

¯gure 1.
Fig. 1 here

We classify our models with respect to the following questions. Do the models
use related series (xt) or (x¤t ) as explanatory variables? Does monthly GDP (yt)
follow an autoregressive (AR) process? If the data is not stationary, is there a
correction for it? What does the structure of the monthly residuals look like?
And ¯nally, what is the algorithm for generating monthly GDP estimates?
The ¯rst class of models is designed without related series. We assume that

there is enough information in the quarterly series, its autocovariance function,
and in the assumed low order AR processes to generate monthly GDP. Moreover,
we combine this assumption with alternative ways to treat non-stationary series
(models 1a-c). Contrasting to these AR models are "naive" models that neither
follow an AR process nor include related series. However, it is not necessary to run
the Kalman ¯lter, because simple calculus produces the same results. For each
quarter, model 1d gives three equal monthly values, namely the quarterly mean.
This indicates that the Kalman ¯lter corrects the mean at each quarter taking
into account a possible trend in the data. Model 1e gives for each quarter three
monthly GDP following a quarterly linear trend centered around the quarterly
mean10. We take model 1e as our benchmark because it has the simplest setup.
The second class of models introduces related series in order to extract infor-

mation for the interpolation of monthly GDP. Within this group, we distinguish
whether monthly GDP is allowed to follow an autoregressive process (models
2f-g) or not (models 2a-e). We further enrich this second class of models with
di®erent ways to treat non-stationarity and with di®erent assumptions about
monthly residuals.
In the next paragraphs we show the various models 1a{c and 2a-g in detail.

10Model 1d needs a constant term as explanatory variable to calculate the quarterly mean.
Model 1e interpolates monthly observations linearly within a quarter, where we assume that
we can split each quarter (except the ¯rst one) into an initial value yt¡3 which is the last month
of the previous quarter and a step dt for t = 4; 5; : : : ; T according to the following equation:

('yt¡3 + dt) + ('yt¡3 + 2dt) + ('yt¡3 + 3dt) = y+
t

As the quarterly GDP (y+
t ), the step dt is given each month, d4 = 0, d5 = 0, and d6 = second

quarter step, etc. ' is a scalar that takes on 1 for t = 6; 9; : : : ; T and 0 for t = 4; 5; 7; : : : ; T ¡ 1.
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3.2.2 Models without Related Series

Model 1a In our ¯rst model, we assume that the ¯rst di®erence of monthly
GDP follows a stationary AR(1) process: ¢yt = Á¢yt¡1 + ut. ¢yt is the ¯rst
di®erence of monthly GDP, Á is a coe±cient constrained to lie inside the unit
circle and ut a iid error term with distribution N (0; ¾

2). In the treatment of the
non-stationarity, we rewrite this AR(1) as an AR(2) of the series in levels:

yt = (1 + Á) yt¡1 ¡ Áyt¡2 + ut (5)

This equation written in companion form, where »t =
¡
yt yt¡1 yt¡2

¢0
,

yields the state equation (6) for t = 1; : : : ; T .
0
@
yt+1
yt
yt¡1

1
A =

0
@
1 + Á ¡Á 0
1 0 0
0 1 0

1
A

0
@

yt
yt¡1
yt¡2

1
A+

0
@
1 0 0
0 0 0
0 0 0

1
A

0
@
ut+1
ut
ut¡1

1
A (6)

Note that this formulation simply setsC0 = 0 in equation (3). The observation
equation is simply incorporating the sum-up constraint leaving out related series.
This implies a0t = 0 and h0t taking on two di®erent values depending on the
respective month:

y+t = h0t¢»t (7)

where h0t =
¡
0 0 0

¢
; for t = 1; 2; 4; 5; 7; : : : ; T ¡ 1,

where h0t =
¡
1 1 1

¢
; for t = 3; 6; 9; : : : ; T .

Model 1b A recent alternative interpolative method was suggested by Bernanke,
Gertler, and Watson [1997]. It consists in using GDP integrated of order one
(I(1)) with a cointegrated series (pt) such that we can compute a new monthly
stationary series yst =

yt
pt

11. In fact pt is just a scaling variable such that yst is
nontrending. One evident assumption underlying this approach is that the calcu-
lated multiplicative cointegration at a quarterly frequency will hold at a monthly
frequency. For the dynamic speci¯cation of yst , now forming the elements of state
vector »t, we assume that it follows an AR(1) process y

s
t = Áyst¡1 + ut. This

results in a slightly di®erent state equation than in model 1a where y is replaced
by ys and the matrix F has a ¯rst row

¡
Á 0 0

¢
. The observation equation

is also di®erent because we have to "neutralize" the division by the I(1) series
pt. This is done by constraining the measurement equation in such a way that
quarterly values of y+t are restored in setting a

0
t = 0 and rede¯ning vector h

0
t:

y+t = h0t¢»t (8)

where h0t =
¡
0 0 0

¢
; for t = 1; 2; 4; 5; 7; : : : ; T ¡ 1,

where h0t =
¡
pt pt¡1 pt¡2

¢
; for t = 3; 6; 9; : : : ; T .

11The ratio ys
t = yt

pt
is chosen as a general framework in that it allows for negative values of

the co-trending pt.
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Model 1c Bomho® [1994] suggests to use the series in levels ignoring the sta-
tionarity problem, arguing that the Kalman ¯lter does not require the user to
make a de¯nite decision regarding the need for di®erencing the data. The Kalman
¯lter o®ers automatic processing capacity for a wide range of nonstationary time
series. The models without related series and without AR processes have already
suggested this feature. Hence, we could write down the law governing the process
as if the series were stationary: yt = Áyt¡1 + ut. This model is similar to model
1a but with a ¯rst row of matrix F de¯ned as

¡
Á 0 0

¢
.

One main criticism of the models 1a-c is that they extract signals only from
the presumed stochastic process of the original series in a way that no new in-
formation is added. We could speak about "fool-yourself"-models12 to generate
the monthly GDP. It seems that we would be better o® enriching the model with
additional information. For this purpose, we now include new series that are
related to the series to interpolate.

3.2.3 Models with Related Series and without AR Structure

Depending on the models, we introduce the related series either in the state vector
equation (3) for the generalized least squares (GLS) estimator (models 2a-d), or
in the measurement equation (4) for the Kalman ¯lter algorithm (models 2e-g).

Model 2a-b Chow and Lin [1971] and [1976] showed how related series can be
used to help interpolate lower frequency data in order to get higher frequency data
with a GLS estimator. They assume that monthly GDP (yt) can be described by
a simple regression of yt on w related series xt, in matrix notation y = X¯ + u,
where the variance-covariance of the error term is V =E [uu0]. They also assume
the same relationship at a quarterly level: y+ = X+¯+u+, where X+ is a matrix
with quarterly average of three months of related series and V+ the variance-
covariance matrix E [u+u+0]. V+ is a function of V. We can con¯gure the
Kalman ¯lter to match the Chow and Lin results de¯ning vector »t as suggested
by Harvey and Pierse [1984]:

»t+1 = F»t +Rvt+1 (9)

y+t = a0tx
¤
t + h

0
t»t (10)

where »t =

0
@
yt ¡ x0t¯
yt¡1 ¡ x0t¡1¯
yt¡2 ¡ x0t¡2¯

1
A ;F =

0
@
0 0 0
1 0 0
0 1 0

1
A ;x¤t =

tX

j=t¡2
xj,

h0t =
¡
0 0 0

¢
and a0t = 0 for t = 1; 2; 4; 5; 7; : : : ; T ¡ 1,

h0t =
¡
1 1 1

¢
and a0t = ¯

0 for t = 3; 6; 9; : : : ; T .

Rvt is equal to
¡
ut 0 0

¢0
. As the related series (xt) are implicitly in the state

vector equation, we set C0 = 0 and reintroduce them as x¤t in the observation

12Thanks to Mark Watson for bringing up this expression.
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equation. In their seminal paper, Chow and Lin directly calculate this best
linear unbiased estimator ŷt for the monthly series from the trace minimization
of the covariance matrix Cov(ŷ ¡ y). They do not use the Kalman iterations
and so avoid the problems associated to the numerical optimization procedures
maximizing the log-likelihood function. This Kalman ¯lter con¯guration and the
following Chow and Lin regression yield the same log-likelihood function13. The
estimates of monthly GDP ŷt are:

ŷ = X^̄GLS+¤(V)û
+ (11)

where ŷ denotes the vector of the monthly variables in matrix notation. This
special ¯tted value has two parts: a traditional ¯tted value X^̄GLS with the
in°uence of related series and an interpolation-corrected residuals term ¤(V)û+.
^̄
GLS is a GLS estimator corresponding to the regression between the quarterly
GDP data (y+) and the "quarterly related series" (X+):

^̄
GLS =

³
X+0V+¡1X+

´¡1
X+0V+¡1y+ (12)

The weighting matrix in the GLS regression is the inverse of the variance-
covariance matrix V+ of the quarterly residuals u+. Hence, the assumptions
about V directly in°uence the distribution of ^̄GLS and the

£
T £ T

3

¤
matrix ¤

for the dissemination of the quarterly residuals over the monthly estimated GDP.
These quarterly residuals are crucial for interpolation, because the traditional
¯tted monthly valuesX^̄GLS do not sum up to quarterly observations. Therefore,
the residuals u+ must be "redistributed" along the monthly GDP according to
the weighting matrix ¤ to correct this shortcoming.
Models 2a and 2b di®er in V. In model 2a, we assume that the variance-

covariance of the monthly residuals V =E [uu0] is a simple diagonal matrix ¾2uIT .
It implies that V+ the variance-covariance matrix of quarterly residuals is equal

to E [u+u+0] = ¾2u
3
IT
3
and ¤ is equal to

0
BBBBBBB@

1 0 : : :
1 0

1 0
...

... 0 1
0 1

: : : 0 1

1
CCCCCCCA
: (13)

However, the diagonal variance-covariance matrix V =E [uu0] is rarely sup-
ported by the data. A way to improve this setting is to allow for serial correlation

13Appendix B describes the Chow and Lin regression and Appendix C shows that the Kalman
¯lter and the Chow and Lin regression yield the same estimates by maximum likelihood.
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in the error term. Hence, we assume for the model 2b that the error term follows
an AR(1), ut = %ut¡1+"t where "t is a white noise, yielding a variance-covariance
matrix V: 0

BBBBB@

1 % %2 : : : %T¡1

% 1 %
%2 % 1
...

...
%T¡1 : : : 1

1
CCCCCA

¾2"
1¡ %2 : (14)

This speci¯cation introduces a di®erent ^̄GLS and a new redistribution matrix
¤ dependent on %. The more % tends to zero, the more the ¤ matrix converges
towards matrix (13). Hence, if the autocorrelation is signi¯cant, redistribution is
less "rigid" than in model 2a and the quarterly residuals are not only spread out
over their corresponding months but also in°uence monthly GDP of surrounding
quarters in a "smoother" way.

Model 2c-d A variation of models 2a-b, as suggested by Denton [1971] and
Fernandez [1981], is to use ¯rst di®erenced time series in the regression instead
of levels in order to account for non-stationarity. They assume that the variance-
covariance of the error term is V =E [uu0] = ¾2IT in model 2c or that the
error term follows an AR(1) yielding a variance-covariance matrix V equal to the
matrix (14) in model 2d . They compute ^̄GLS with a weighting matrix equal to
the inverse of the quarterly equivalent of (D0V0D)¡1 where:

D =

0
BBBBB@

1 0 0 : : :
¡1 1 0
0 ¡1 1
0 0 ¡1
...

. . .

1
CCCCCA
; (D0V0D)¡1 =

0
BBBBBBB@

1 1 1 1 : : : 1
1 2 2 2
1 2 3 3
1 2 3 4
...

. . .

1 T

1
CCCCCCCA
: (15)

Matrix D is a ¯rst di®erence operator. From this follows that the ¤ matrix
implies for both models a new redistribution of the quarterly residuals, where
weighted moving average of quarterly residuals is given to each monthly estimated
GDP.

Model 2e This model uses the Kalman ¯lter algorithm. The advantage is
that we do not have to assume the driving process for the monthly residuals.
The Kalman ¯lter considers the most appropriate one. As in the Chow and Lin
regression, we assume no autoregressive process to see the improvement of the
Kalman Filter and its greater °exibility in shaping its equivalent of ¤(V)û+.
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The state-space form is the following:

0
@
yt+1
yt
yt¡1

1
A =

0
@
c1 c2 : : : cw
0 0 : : : 0
0 0 : : : 0

1
A

0
BBB@

x1t+1
x2t+1
...
xwt+1

1
CCCA

+

0
@
1 0 0
0 0 0
0 0 0

1
A

0
@
ut+1
ut
ut¡1

1
A (16)

y+t = h0t¢»t (17)

where h0t =
¡
0 0 0

¢
; for t = 1; 2; 4; 5; 7; : : : ; T ¡ 1,

where h0t =
¡
1 1 1

¢
; for t = 3; 6; 9; : : : ; T .

In equation (16) the autoregressive part disappears from the state equation
and the related series are introduced by the [3£ w] matrix C0. The error terms
for the state equation are standard. We estimate the c coe±cients by numerically
maximizing the log-likelihood function.

3.2.4 Models with Related Series and with AR Structure

Model 2f In addition to the related series, we assume here that the autore-
gressive structure explained in the previous class of models helps to describe the
monthly GDP. The non-stationarity correction is similar to the one done in the
model 1a with model in AR(2) form. After the inclusion of related series to model
1a, the state equation becomes equation (6) plus the element C0xt+1 where xt+1
includes the w related series:

Model 2g This model is similar to model 1b but with the addition of related
series as in model 2f with a corresponding matrix C0.

4 Data

4.1 Signal Extraction from Related Series

A key factor in the present interpolation problem is the signal extraction from
related series. Besides the assumption about the dynamics of GDP, related time
series data represent the main information source for interpolation. These data
must ful¯ll two requirements.
First, they need to be correlated with the series to interpolate. The higher

the systematic comovements with GDP are, the stronger is the signal that can be
exploited to ¯ll the gaps. On the other hand, if there is only a modest information
content in the related series, this comes at the cost of a lot of noise that is

12



introduced in the interpolated series. The choice of the related series is therefore
crucial in order to successfully estimate a series at higher frequency.
Second, the related series need to be available in the desired higher frequency

of the interpolated GDP. The fact that there are not many macroeconomic series
available at monthly frequency imposes a strong restriction in Switzerland. This
leads us to use other than Swiss variables that we assume to be highly correlated
with the desired related series.
These two points require a thorough investigation for the task of choosing

the correct related series. Amemiya [1980] suggests a joint strategy based on
economic-theoretic considerations and on statistical evidence. Economic intu-
ition can often indicate which data series to choose and what functional form
they should have. Together with this, it is convenient to have a single statistical
measure to choose related series that produce the "best" result. These two as-
pects, intuitive approach and choice metrics, should be viewed as forming a single
choice package rather than being in competition with each other. They allow to
make a ¯nal choice of the series which we use in our models. Both elements of
the selection process will be presented in detail in the following section.

4.2 Choice of Related Series

4.2.1 Economic Intuition

The most natural way to approach the series selection problem is to split up
GDP into its expenditure components, private consumption (C), private domestic
investments (I), government expenses (G) and net exports (X ¡M):

Y = C + I +G+X ¡M (18)

With the exception of exports and imports, none of these series is available
at the higher frequency. Therefore, it is necessary to identify related data series
that proxy for the desired components.
An alternative to breaking GDP into its expenditure components is to bene¯t

from the characteristics of Switzerland as a small open economy and the im-
portant comovement between domestic and foreign business cycles. Taking into
consideration monthly foreign main economic indicators allows us to choose the
related series from a broader data set as Switzerland's closest trade partners have
traditionally large statistical databases.
The existence of two groups of data series, national accounting and open

economy, imply that the pure evaluation of potential candidates within each
group has to be complemented with the comparison of entire sets of related series
after the di®erent model estimations14.

14From the limited degrees of freedom in applying economic theories due to data availability
restrictions, it follows that the statistical evaluation must take a more important place than it
usually would according to Amemiya [1980].
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4.2.2 Statistical Evaluation

The case discussed here is the search for individual proxy variables in economic
models15. Suppose, you identify a set of related data series x out of which vari-
able xk is unobservable. Furthermore, the variable y which is being interpolated
depends linearly on x.

yt = ®0 + ®1x1;t + ®2x2;t + : : :+ ®kxk;t + : : :+ ut (19)

The goal is to choose the best observable proxy for xk. In cases like this, an
informal method often applied is replacing xk with the variable zk which yields
the highest R2 of all possible variables z in equation (19). Leamer [1983] shows
that if the proxy variables z are assumed to depend linearly on xk and the error
terms being Niid, the best proxy is the one that produces the highest R2. In the
univariate regression zi;t = ±ixk;t+ "i;t, the particular zi which yields the smallest
variance ¾2"i could be de¯ned as the best proxy. Leamer [1983] uses a likelihood
ratio test to show the unambiguously negative relationship between the variance
of the error term and the R2.
Another popular method which can be applied to a wider range of competing

models than the one R2 criterion above is the method of penalized likelihood. The
best known examples in this class of criteria which has grown a lot in the last
twenty years are the Akaike Information Criterion (AIC) [1974] and the Schwarz
Information Criterion (SIC) [1978]. In this class of criteria, a term that acts to
punish additional coe±cients is added to the likelihood function.

4.3 Data Description

For a long time, Switzerland has stayed far behind other European countries in the
development of economic statistical data. In 1996, as part of a reform program,
national accounting was adapted to the European System of National Accounting
(ESNA) 7816. Thereafter, GDP was calculated di®erently. The Federal Statistics
O±ce dated the series back to 1980 such that there is now a data sample of more
than 18 years or 73 quarterly observations. The ¯gures to be interpolated are
de°ated and deseasonalized17.
The related series18 in the national accounting approach have been identi¯ed

as retail sales (RS) to proxy for private consumption and as the level of not

15At this stage of the text, we describe the data selection within one group of related series
as described in section 4.2.1. Choosing the best set of related series is also independent of the
di®erent models presented in section 3.

16Up to and including 1996, Swiss GDP was recorded following the OECD standard 58.
According to Federal Statistics O±ce, it is planned that to adopt the ESNA 95 standard
within a few years.

17Deseasonalization was executed using the X12/ARIMA method of the US Bureau of Census.
18All the series, with the exception of real GDP given by the Federal O±ce for Economic

Development and Labour, are provided by Datastream.
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utilized construction loans to inversely proxy for investment (NL). These monthly
available proxies have been selected based on the three criteria described in the
previous section. Furthermore, we include exports (X) and imports (M). All
the series are entered in levels19. Government expenditure was dropped in the
national accounting approach due to its low covariance with the business cycle.
This would have introduced too much noise and moreover, there is no sensible
proxy at monthly frequency for it.
As foreign series, we use a composite index of industrial production (COMIP)20,

British IP (UKIP), and German IP (BRDIP). IP are the foreign monthly available
series that move closest with the Swiss business cycle of all the related foreign
series considered (results not reported).
Prior to estimation, we have excluded several potential series based on eco-

nomic arguments or on the statistical evaluation of the previous section. French
IP, Italian IP, survey data by the KOF21, labor market ¯gures, exchange rates
and commodity prices were eliminated statistically. We have neither included
variables that have proved to have predicting power for GDP such as the term
spread because of unrealistic assumptions on the lead-lag relationship that would
have been necessary. Figure 2 and table 1 give an overlook over the series used
in this paper.

Fig. 2 and Table 1 here

During the 18 years of observations, the state of the Swiss economy can be
roughly divided in two parts. Figure 2 clearly shows the phases of economic
growth and prosperity in the 1980's and of stagnation in the 1990's. During
its recession, Switzerland exhibited the lowest real GDP growth of all European
countries22.
Table 1 reports basic summary statistics of the quarterly and monthly series

that will be used for interpolation. Following the integration results from ¯gure
2 and from augmented Dickey-Fuller (ADF) tests for all the variables (not re-
ported), we ¯nd that the levels of all the series are non-stationary. Hence, we
report the results for growth rates. The ADF tests and the AR(1) regressions on
the growth rates con¯rm that the levels of the series are not stationary. The dif-
ferent values of the contemporary cross-correlations also con¯rm the requirement
of the comovements of the related series with the quarterly GDP. Finally, these
cross-correlations also show why we only consider contemporary relationships be-
tween the related series and the quarterly GDP. It is actually very di±cult to ¯nd

19The models transform the level vectors into the desired form.
20IP of ¯ve countries (major trade partners of Switzerland) are weighted according to the

share of Swiss exports to the respective countries in 1996.
21Institute for Business Cycle Research of the Swiss Federal Institute of Technology.
22To keep things simple and for further research, we decided not to take into account this

structural break that would mean to combine our interpolations models with time-varying
parameters generally dealt within the Kalman ¯lter framework or with the use of dummy
variables.
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robust leads and lags - the so-called stylized facts of the business cycles literature
- between GDP and our proxy variables.
We also perform a Johansen [1991] test to check for cointegration that is

needed for the evaluation of the applicability of the Bernanke, Gertler, and Wat-
son extension [1997]. It is natural to assume that RS is moving along with GDP.
We therefore test the quarterly proxy for cointegration. The test results reject
the hypothesis of no cointegration at the 1% signi¯cance level. These results are
reported in table 2.

Table 2 here

Not reported are the tests of other potentially cointegrated variables with an
economic interpretation. All the tests reveal that only the quarterly GDP and
the volume of retail sales (RS) are cointegrated. Hence, we use RS either as
a related series or as the detrending series (pt) in the Bernanke, Gertler, and
Watson framework23. In fact we cannot directly test the needed multiplicative
cointegration, but a ADF test of the stationarity of the quarterly equivalent of
yst =

yt
pt
= GDPt

RSt
reveals that this ratio is stationary at the 1% signi¯cance level.

5 Results

5.1 Overview

The interpolation results are displayed in table 3. It contains for each model
statistical information about the estimated series for the period 1981-199724, the
related series, the information criterion, the log-likelihood, and key indicators for
the annualized growth rate of the monthly interpolated GDP. Two mean square
errors (MSE) for the evaluation of the models are given. The ¯rst one is between
the level of the interpolated benchmark (model 1e) and the interpolated series of
each model, respectively. The second one is the MSE between the true quarterly
GDP and a simulated quarterly interpolated GDP from annual data within the
model in question in order to compare how the interpolation model would have
performed at a frequency where models can be selected unambiguously based on
an available data set.

Table 3 here

Note, that table 3 is constructed in order to evaluate the models with respect
to two basic directions. First, it is important to know if the inclusion of related

23To prevent the detrending series from introducing excessive volatility in the system we
take only the low frequency part of RS after Hodrick-Prescott ¯ltering. The main objective of
detrending GDP can still be maintained.

24Due to initial oscillations we discard twelve months of observations which otherwise would
have heavily in°uenced the results.
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series (class 2) performs better than the "fool-yourself" class 1. Second, we in-
vestigate the appropriate treatment of non-stationarity and analyze the question
whether applying modern techniques perform better than traditional ones.

5.2 Evaluation of Related Series

Our point of view is that it is desirable to have an economic model underlying
the interpolation instead of just a purely econometric procedure which appears
very mechanical. Moreover, related series could possibly break the regular pattern
within a quarter produced by all interpolation procedures without related series25

as shown in ¯gure 3.
Fig. 3 here

In its left hand part, the ¯gure shows the plot of series 20 estimates and the
published quarterly GDP estimates26. The cyclical pattern within the quarter is
illustrated on the right hand side as an average di®erence for the three months
within the quarter between series 20 and the benchmark for growth and decline
periods respectively. The deviations are signi¯cant for the ¯rst and the last obser-
vation within the quarter and leads us to reject the model for economic reasons.
The presence of the pattern in the GDP estimates is due to the autocorrelation
coe±cient and its shape depends on the sign of GDP growth. It is thus tempting
to include related series to eliminate the pattern produced by the autoregres-
sive structure of the model. However, we found that in all type 2f series the
inclusion of related series, relative to model 1a, does not attenuate the pattern
but exacerbate it. Thus, the only way to eliminate the pattern is to remove its
source, the autoregressive structure, and to use models 2a-e which assume no
autocorrelation. In these models we can see the related series implementing their
movements in the interpolated GDP leading to the desired oscillations.
Econometrically, the conclusion of whether to include related series or not is

ambiguous. For series 15 to 19, the value of the AIC is higher than for their
respective base case, 1d (not reported) and 1a, while only for series 20 it is
lower. Generally, testing the signi¯cance using a likelihood ratio test shows that
introducing related series does improve the performance of the interpolation for
the model 2e but not for model 2f where the related series are just entered as
growth rates. Results show that related series always come at a cost of introducing
noise in the interpolated series. In our case, a lot of monthly series display too
much noise in order to make an economic sense. The standard deviation of

25The pattern is systematically convex or concave if the model has an autoregressive structure,
depending on growth state of the economy. Monthly GDP estimates produced by model 1e are
linear and model 1d produces monthly estimates which equal 1/3 of quarterly GDP.

26The three months of each quarter sum to the value of this quarter. However, the line of
the monthly interpolated GDP does not exactly pass through the points of quarterly GDP as
the latter is simply scaled by a factor of 1/3. The fact that the dots are not exactly on the line
cannot be interpreted as a quality indicator.
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the growth rates of di®erent interpolated series is a good indicator. Hence, all
the models generating too much volatility relative to the annualized standard
deviation of the quarterly GDP estimates are not displayed27 in table 3.
Regarding the two sets of related series, one observes that in general related

series based on the open economy assumption introduce less volatility in the
generated growth rates than the national accounting variables. For the reported
related series COMIP28 and NL this relation is reversed. However, including
additional variables in the national accounting approach increases the volatility
considerably. To further investigate the characteristics of the most appropriate
related series note that within each model the log-likelihood values show that the
national accounting approach is preferable even if not always signi¯cantly.
Another evaluation criteria is the mean squared error (MSE) of a model series

with respect to the benchmark. The results indicate that in general adding related
series increases the MSE re°ecting an increase in volatility as the models deviate
more from the smooth benchmark. As this criteria is a rather soft one and as
there are models with the contrary e®ect, it does not seem suitable for model
evaluation. Moreover, our benchmark is only founded on practical reasons and
hence, cannot be regarded as an objective measure for model evaluation.

5.3 Evaluation of Techniques

The comparison between di®erent interpolation setups and the question whether
modern methods perform better than traditional ones is closely linked to the
treatment of stationarity. First of all, within the regression based methods the
correction for nonstationarity proposed by Denton and Fernandez (DF, model 2c)
does produce results that are qualitatively only slightly better than the classic
Chow and Lin method using level series (CL, model 2a). The e®ect of modelling
AR(1) error terms in the CL-model (model 2b) and in the DF-model (model 2d)
is not clear. In the CL-models, the likelihood falls while for the DF-models it
increases, when AR(1) error terms are considered. The standard deviation of the
generated series rises in the CL-models and behaves irregularly in the DF-setups.
This shows that these methods achieve a higher likelihood when series are more
volatile.
The theoretical advantages of the Kalman Filter concerning the assumptions

about the treatment of nonstationarity, the error terms of the process govern-

27We restrict ourselves to models that produce series with an annualized standard deviation
lower than four times the variability of the growth rate of the o±cial quarterly GDP estimates
(13%). Comparisons between monthly and quarterly values of industrial production growth
in various countries show that the annualized values of monthly standard deviation are 2 to 4
times higher than quarterly ones which serve as a reference.

28Of all the series that could not be distinguished by statistical evaluation in section 4.2.2,
COMIP is found to be the most useful related series of the open economy approach. Results
using BRDIP and UKIP are therefore not reported in table 3.
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ing monthly GDP and the dynamic updating create high expectations for the
interpolation results that cannot all be satisfactorily met when monthly GDP is
analyzed in Switzerland.
Models constructed in a ¯rst di®erence equation with an autoregressive struc-

ture suggested by Bernanke, Gertler, and Watson [1997] are clearly worse than
the ones reported in table 3, both in terms of cyclical regularity and in volatility.
This procedure neglects the fact that the Kalman ¯lter already corrects the non-
stationarity of the data (LÄutkepohl [1993]), creating a kind of redundance in the
correction of this phenomena. The model 2e is in this sense a better model. We
do not explicitly account for nonstationarity but keep the improved treatment of
the error terms with respect to the traditional models. Model 2e is in fact similar
to models 2a-b, but with a wider range of error terms. The ¯lter picks up the
best model of error terms within the full range of possible constructs, without
the need to state their characteristics.

5.4 A Monthly GDP Estimate

Based on this mixed evidence concerning the two directions, we recommend the
series 17 for further research. It has the advantage to be produced by a Kalman
¯lter framework including related series. Due the absence of autoregressive struc-
ture, it does not display a regular pattern and the series does exhibit moderate
volatility. The plot is given in ¯gure 4 and the values in table 4 in the next
section.
Can this extensive selection procedure be con¯rmed by ¯rst interpolating

annual to quarterly data and then comparing the resulting quarterly series with
the true GDP estimates? If yes, then we would have a very handy tool for
the evaluation of competing interpolation models. Of course, the underlying
assumption that the best annual interpolation model is also the best quarterly
one is strong, but if the criteria does well, it could well be used as suggestive
evidence in similar problems. Moreover, there is no reason to think that the
frequency change has a fundamental impact on the performance of the models29.
But the results show that it is not always the case that models with highest
likelihood are the best interpolating models at the lower frequency. Within the
GLS based class just model 2c con¯rms our expectations. For all models with a
pattern, applying this method makes no sense. However, for our selected series the
suggestive evidence is partly veri¯ed. Therefore, we conclude that this approach
may be used as an indicator only but certainly not as a selection criteria.

29Another way to apply this proposal would be to select the model with the best AIC for the
interpolation from annual data and to see if the same model also produces the best AIC for the
interpolation of monthly data from quarterly data.

19



6 Conclusion

In this paper, we describe a setup that nests a wide range of interpolation mod-
els in the literature and we apply it to Swiss GDP. The goal of this paper is to
evaluate alternative interpolation models and then to produce a monthly desea-
sonalized real GDP available for researchers and practitioners. The results are
given in ¯gure 4 and table 4.

Fig. 4 and Table 4 here

With respect to the nonstationarity and to the usefulness of related series, it
is di±cult to a priori present a clear-cut answer how these puzzles can be treated
best. Our results show that the ways to consider the nonstationarity problem and
to solve it with the second-order autoregressive structure (models 1a, 2f) or with
the detrending method (models 1b, 2g) are not suitable for Swiss data. These two
methods impose econometric characteristics on the produced data that cannot
be carried further for an economic interpretation. The nonstationarity correction
made by the ¯lter itself seems to be su±cient.
Our results further show that in particular cases, related series can be very

useful. In this case, economic interpretation backed on our two economic models
is only based on the comparison between the volatilities of the growth rates of
the quarterly values and of the computed monthly series, and some subsidiary
indicators. However, including related series does not systematically improve the
results of the base case.
The data does not seem to con¯rm unambiguously the expected long{run

hypothesis between the interpolation at a monthly and at a quarterly level. A
more rigorous econometric analysis would be needed to know if this comparison
transgresses short-run considerations.
For the interpolation of Swiss GDP we suggest to use an approach with the

four related series exports, imports, retail sales, and not utilized construction
loans, the latter two of which are proxying for consumption and investment which
are not monthly recorded. Furthermore, we ¯nd that the best results can be
achieved in a Kalman ¯lter framework with no restrictions on the error terms.
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Appendix A: Kalman Filter

In this appendix, we show the iteration steps of the Kalman ¯lter. We also give
the log-likelihood function of our system. All our interpolation models, are based
on equations (3) and (4), »t+1 = F»t +C

0xt+1 +Rvt+1, and y
+
t = a

0
tx
¤
t + h

0
t¢»t.

The Kalman ¯lter iteration, correction, prediction, and MSE steps at time t, is
the following loop. At time t assume that y+0 ; y
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+
2 ; : : : ; y
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related series x and x¤ are known but up to t+ 1. The predictions at time t¡ 1
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Prediction step:
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Log-likelihood function:

Each observation of the sample y+t is normally distributed:
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Appendix B: Chow and Lin Regression

In this appendix, we show the Chow and Lin regression model. Chow and Lin
assume a true model for the monthly GDP explained by w related series given
in matrix notation for the whole sample of T observations: y = X¯ + u where
V =E [uu0] is the variance-covariance matrix of the error terms. With help of a£
T
3

£ T
¤
matrix CD =

1
3

³¡
1 1 1

¢
­ IT

3

´
, they transform this true model to

match the quarterly observed GDP. The quarterly vector can thus be expressed:

y+ = CDy =CDX¯ +CDu = X+

[T3 £w]
¯ + u+

where E [u+u+0] = V+ = CDVC
0
D and where X

+ is a matrix with quarterly
average of related series. Chow and Lin looks then for a

£
T £ T

3

¤
matrix A that

can ¯ll the gap between quarterly and estimated monthly data such that:

ŷ = Ay+

In this search they impose an unbiased estimated monthly series ŷ:

E [ŷ ¡ y] = E
£
A

¡
X+¯ + u+

¢
¡X¯ ¡ u

¤
= E

£¡
AX+¡X

¢
¯

¤
= 0

implying that AX+¡X = 0 and giving then an expression for the di®erence
between the true monthly series and the estimated one ŷ¡ y:

ŷ¡ y = Au+ ¡ u

To ¯nd the optimal matrix A, they minimize under the constraint of unbi-
asedness the trace of the variance-covariance matrix Cov [ŷ], in fact minimizing
the sum of all the variances corresponding to each "observation". The Cov [ŷ] is:

E
£
(ŷ¡ y)2

¤
= AE

£
u+u+0

¤
A0 ¡AE

£
u+u0

¤
¡ E

£
uu+0

¤
A0 + E [uu0]

= AV+A0 ¡A E
£
u+u0

¤
| {z }

V+"

¡ E
£
uu+0

¤
| {z }

V"+

A0 +V

= AV+A0 ¡AV+" ¡V"+A0 +V

They minimize with respect to A the following Lagrange function with help
of a Lagrange multiplierM0:
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1

2
tr

£
AV+A0 ¡AV+" ¡V"+A0 +V

¤
¡ tr

·
M
[w£T ]

0 ¡AX+¡X
¢¸

L =
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2
tr

£
AV+A0¤ ¡ tr

£
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¤
+
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2
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£
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¤
+ tr [M0X]
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yielding A:

A = X
³
X+0V+¡1X+

´¡1
X+0V+¡1

+V"+V+¡1
·
In ¡X+

³
X+0V+¡1X+

´¡1
X+0V+¡1

¸

The ŷ is then given by the following ¯tted values: ŷ = Ay+.

ŷ = X

^̄
GLSz }| {³

X+0V+¡1X+
´¡1

X+0V+¡1y+

+V"+V+¡1
·
IT
3

¡X+
³
X+0V+¡1X+

´¡1
X+0V+¡1

¸
y+

| {z }
û+

ŷ = X^̄GLS+
³
V"+V+¡1

´
û+ = X^̄GLS+¤û

+

The monthly series is computed by the third of all the elements of the vector
ŷ.
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Appendix C: Comparison of Log-Likelihood Functions

In this appendix, we show that the Kalman ¯lter and the Chow and Lin re-
gression yield the same estimates by maximum likelihood. Assume this structural
equation:

yt = x
0
t¯+ut, for t = 1; : : : ; T

State vector:

»t =

0
@
yt ¡ x0t¯
yt¡1 ¡ x0t¡1¯
yt¡2 ¡ x0t¡2¯

1
A ; E(u2t ) = ¾

2

State equation:

»t =

0
@
0 0 0
1 0 0
0 1 0

1
A »t¡1 +

0
@
1 0 0
0 0 0
0 0 0

1
A

0
@
ut
ut¡1
ut¡2

1
A

Measurement equation:

y+t = a
0
tx
¤
t + h

0
t»t or y

+
t = a

0
t (xt + xt¡1 + xt¡2) + h

0
t»t

where:

x¤t =

tX

j=t¡2
xj

h0t =
¡
0 0 0

¢
and a0t = 0 for t = 1; 2; 4; 5; 7; : : : ; T ¡ 1

h0t =
¡
1 1 1

¢
and a0t = ¯

0 for t = 3; 6; 9; : : : ; T

Assume:

»̂tpt¡1 =

0
@
ŷtpt¡1 ¡ x0t ^̄
ŷt¡1pt¡1 ¡ x0t¡1 ^̄
ŷt¡2pt¡1 ¡ x0t¡2 ^̄

1
A

Ptpt¡1 =

0
@
¾2 0 0
0 ¾2 0
0 0 ¾2

1
A

Maximum likelihood function for this Kalman ¯lter:

T
3X

t=1
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6
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5
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and this is the log-likelihood function for the Chow and Lin regression where
for y+:

y+t s N

Ã
^̄ 0x¤t
E[u+]

; 3¾2
V [u+]

!

or

y+t s N (ŷtpt¡1 + ŷt¡1pt¡1 + ŷt¡2pt¡1| {z }
^̄ 0xt + ^̄

0
xt¡1 + ^̄

0
xt¡2 =
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0
x¤t
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Figure 1 - Overview of Interpolation Models
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1AR(2) stands for an AR(1) process in first difference rewritten as an AR(2) in levels; BGW means correction according to Bernanke, Gertler and Watson [1997]; 

1st Diff. uses a first difference operator. 2Diag. indicates no autocorrelation; AR(1) stands for residuals following an AR(1) process.
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1 GDP = Quarterly Gross Domestic Product; RS = Value of retail sales;

NL = Level of not utilized construction loans; X = Exports

volume; M = Imports volume; BRDIP = Industrial production

in Germany; UKIP = Industrial production in UK; COMIP = 

Composite index of industrial productions.
2 Source: Datastream.

Figure 2 - GDP (-) and Related Series (--)1,2
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Figure 3 - Quarterly GDP and Interpolated Series with Pattern
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Figure 4 - Monthly GDP 81-97
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mean 1.330 3.198 -0.966 4.087 4.289 1.402 1.310 1.516

st.dev. 2.947 46.289 21.386 49.032 51.113 21.732 13.170 12.163

AR(1)4
0.252 -0.653 * 0.249 * -0.569 * -0.609 * -0.428 * -0.220 * -0.323 *

JB test 0.050 77.884 * 199.177 * 53.174 * 85.518 * 1370.582 * 6.710 * 68.533 *

ADF -4.379 * -11.043 * -2.981 * -7.913 * -8.064 * -6.261 * -5.298 * -5.632 *

GDP,SERIES(-4)
5

0.086 0.361 -0.082 0.060 0.098 -0.117 0.069

GDP,SERIES(-3) 0.001 0.296 0.103 0.156 0.031 0.030 0.049

GDP,SERIES(-2) 0.124 0.372 0.147 0.175 0.118 0.092 0.176

GDP,SERIES(-1) -0.006 0.304 0.183 0.202 0.336 0.168 0.409

GDP,SERIES(0) 0.089 0.232 0.261 0.088 0.248 0.050 0.267

GDP,SERIES(1) 0.126 0.235 0.254 0.257 0.352 -0.012 0.302

GDP,SERIES(2) 0.123 0.145 -0.019 -0.053 0.212 -0.088 0.187

GDP,SERIES(3) 0.022 0.164 -0.073 0.035 0.143 -0.172 0.089

GDP,SERIES(4) 0.191 0.027 -0.057 -0.186 -0.076 -0.064 -0.120

Note:
1Annualized statistical figures are calculated for quarterly growth rates of GDP and for monthly growth rates for all other variables.
2GDP = Gross domestic product; RS = Value of retail sales; NL = Level of not utilized construction loans; X = Exports volume; M = Imports

volume; BRDIP = Industrial production in Germany; UKIP = Industrial productin in UK; COMIP = Composite index of IP.
3All variables except COMIP are seasonally adjusted.
4 ** = significant at 5 % level; * = significant at 1 % level, for the t-test of a zero coefficient on an AR(1) process, for the Jarque-

Bera (JB) test of normal distribution, and for the augmented Dickey-Fuller test of unit root (ADF).
5Cross-correlation of leads and lags of quarterly growth rates of related series with quarterly GDP growth rate. 

Table 1 - Descriptive Statistics of Observed Time Series1

GDP2,3 RS NL X M BRDIP UKIP COMIP



H0 Ha

0 2 0.2840 25.1144 * 20.040 15.4100

1 2 0.0244 1.7254 6.65 3.7600

0 1 0.2840 23.3891 * 6.65 3.7600

Note:
1Cointegration tests are performed with quarterly level data. GDP = Gross domestic product; RS = Value

of retail sales.
2Tests are run assuming linear trend in data and an intercept in the cointegrating equation and in the vector

autoregression. Two lags are included.
3 ** = significant at 5 % level; * = significant at 1 % level.

Table 2 - Cointegration Test of GDP and RS1

Eigenvalue2 LR3 1% 5%



Model
Class, Related Series
AIC 8.0484 10.0798 14.6576 17.3080 13.0627
log L. -562.5559 -573.4082 -636.5871 -733.3278 -575.3729
mean 1.3179 1.3276 1.1978 1.2523 1.2675
std 4.3039 5.1094 9.9281 5.2206 14.1292
AR(1)3 0.2154 * 0.0595 -0.3705 * -0.0167 -0.5323 *

JB test 308.0648 * 15.5904 * 12.0892 ** 192.1336 * 2.7653
ADF test -5.4689 * -5.9574 * -5.7885 * -5.3002 * -6.4013 *

MSE w. benchmark4 3307.38 4146.21 18659.04 7123.27 32328.09
MSE A->Q 196862.53 144095.19 206864.82 208184.95 248244.08

Model
Class, Related Series
AIC 15.8917 17.3255 13.3458 15.6284 14.4199
log L. -681.6513 -733.9669 -585.7091 -677.9689 -627.1078
mean 1.2868 1.3038 1.4108 1.2961 1.3025
std 6.4232 3.4897 12.2157 3.6553 3.5096
AR(1)3 -0.1438 ** 0.7343 * -0.5350 * 0.6266 * 0.7217 *

JB test 17.9339 * 16.8364 * 0.5234 6.5835 ** 15.9277 *

ADF test -5.5394 * -4.2072 * -6.8464 * -4.3023 * -4.1666 *

MSE w. benchmark4 8884.46 4245.59 23601.90 4394.56 4287.16
MSE A->Q 129891.30 97166.50 221468.03 139871.77 102001.75

Model
Class, Related Series
AIC 14.3756 15.2662 14.3024 14.0856 11.4703
log L. -623.5207 -664.8914 -622.8601 -614.8347 -569.7796
mean 1.3375 1.2685 1.2758 1.3468 1.3820
std 4.6631 6.8035 4.6896 7.9571 9.9682
AR(1)3 0.1387 ** -0.2316 * 0.0975 -0.3632 * -0.3851 *

JB test 9.6226 * 13.4503 * 332.6322 * 15.0818 * 17.7948 *

ADF test -5.5733 * -4.9152 * -4.9212 * -5.6324 * -5.6695 *

MSE w. benchmark4 5674.41 10947.86 6696.91 11778.87 19095.04
MSE A->Q 79448.95 120193.62 151188.26 141821.70 259232.93

Model
Class, Related Series
AIC 13.9672 10.9534 8.0537 8.0498 8.0407
log L. -707.0603 -564.4899 -562.5552 -562.5514 -562.5456
mean 1.2766 1.3828 1.3181 1.2846 1.2839
std 5.2332 12.1565 4.3022 4.3011 4.5758
AR(1)3 -0.0188 -0.5220 * 0.2155 * 0.2235 * 0.1080
JB test 216.2845 * 2.5033 289.2578 * 306.5034 * 156.8350 *

ADF test -5.2316 * -6.2078 * -5.4785 * -5.4467 * -5.5563 *

MSE w. benchmark4 7152.71 23682.66 3304.75 3282.52 3701.94
MSE A->Q 210478.57 230738.92 488844.80 147968.33 163693.19
Note: 1GDP = Gross domestic product; RS = Value of retail sales; NL = Level of not utilized construction loans;

X = Exports volume; M = Imports volume; BRDIP = Industrial production in Germany; UKIP = Industrial production in UK;

COMIP = Composite index of IP. All estimations include a constant, models 2c and 2d transform time trend to constant.
2The descriptive statistics are for growth rates of the interpolated GDP for 81-97.
3 ** = significant at 5 % level; * = significant at 1 % level, for all the tests.
4Level MSE with benchmark 1e is for the period 81-97 and level MSE A->Q is for the whole period 82-96.
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Table 3 - Interpolation Results1,2

1
1a

2 3 4 5
1c 2a;X,M,RS,NL

2c;NL

2a,COMIP 2a;NL



M1 81 21547.19 M1 84 22122.76 M1 87 23741.70 M1 90 25950.00 M1 93 26339.71 M1 96 26518.88
M2 81 21533.94 M2 84 22101.38 M2 87 23803.74 M2 90 26338.53 M2 93 26149.14 M2 96 26319.14
M3 81 21445.75 M3 84 22180.70 M3 87 23399.89 M3 90 26390.93 M3 93 26062.83 M3 96 26454.22

64526.88 66404.84 70945.33 78679.46 78551.69 79292.24
M4 81 22019.38 M4 84 22288.97 M4 87 23659.96 M4 90 26353.83 M4 93 26225.01 M4 96 26180.06
M5 81 21924.48 M5 84 22173.38 M5 87 23309.09 M5 90 26370.57 M5 93 26071.01 M5 96 26518.21
M6 81 22034.11 M6 84 22294.04 M6 87 23444.59 M6 90 26636.30 M6 93 25949.31 M6 96 26416.75

65977.97 66756.39 70413.63 79360.69 78245.33 79115.02
M7 81 22086.77 M7 84 22293.96 M7 87 23656.61 M7 90 26551.29 M7 93 26208.54 M7 96 26317.14
M8 81 22146.44 M8 84 22646.49 M8 87 24066.38 M8 90 26577.40 M8 93 25932.67 M8 96 26438.84
M9 81 22146.51 M9 84 22427.77 M9 87 23619.80 M9 90 26478.80 M9 93 25968.73 M9 96 26159.72

66379.72 67368.22 71342.79 79607.48 78109.94 78915.70
M10 81 22190.22 M10 84 22592.54 M10 87 23942.52 M10 90 26339.18 M10 93 26281.98 M10 96 26123.76
M11 81 21879.02 M11 84 22566.74 M11 87 23608.97 M11 90 26735.52 M11 93 25952.01 M11 96 26452.74
M12 81 22076.78 M12 84 22839.18 M12 87 24130.27 M12 90 26642.29 M12 93 25779.11 M12 96 26234.10

66146.02 67998.45 71681.76 79716.98 78013.10 78810.60
M1 82 21847.19 M1 85 22692.26 M1 88 23754.84 M1 91 26570.56 M1 94 26189.55 M1 97 25970.37
M2 82 21828.27 M2 85 22877.37 M2 88 23911.03 M2 91 26354.49 M2 94 25849.91 M2 97 26326.17
M3 82 21836.34 M3 85 23192.12 M3 88 24526.80 M3 91 26655.18 M3 94 26473.88 M3 97 26708.77

65511.80 68761.75 72192.67 79580.23 78513.34 79005.32
M4 82 21805.96 M4 85 23141.78 M4 88 24283.51 M4 91 26104.60 M4 94 25860.55 M4 97 26663.08
M5 82 21659.71 M5 85 22895.66 M5 88 24334.66 M5 91 26236.97 M5 94 26172.53 M5 97 26507.56
M6 82 21559.15 M6 85 23053.29 M6 88 24376.48 M6 91 26021.44 M6 94 26226.25 M6 97 26585.48

65024.82 69090.73 72994.65 78363.01 78259.34 79756.12
M7 82 21523.04 M7 85 23286.67 M7 88 24443.01 M7 91 26166.88 M7 94 26131.31 M7 97 26782.24
M8 82 21550.88 M8 85 23230.96 M8 88 24622.28 M8 91 26205.93 M8 94 26249.00 M8 97 26895.27
M9 82 21466.62 M9 85 23163.66 M9 88 24644.74 M9 91 26140.26 M9 94 26370.52 M9 97 26514.14

64540.54 69681.29 73710.03 78513.07 78750.83 80191.65
M10 82 21575.79 M10 85 23263.82 M10 88 24587.87 M10 91 26184.97 M10 94 26160.96 M10 97 27035.96
M11 82 21351.93 M11 85 23598.24 M11 88 24587.23 M11 91 26350.56 M11 94 26235.31 M11 97 26692.67
M12 82 21411.29 M12 85 23314.73 M12 88 25109.68 M12 91 25896.47 M12 94 26618.72 M12 97 26882.25

64339.01 70176.79 74284.78 78432.01 79015.00 80610.89
M1 83 21510.41 M1 86 23465.24 M1 89 24803.75 M1 92 26614.96 M1 95 26334.31
M2 83 21272.26 M2 86 23281.20 M2 89 24914.50 M2 92 26701.74 M2 95 26438.23
M3 83 21626.39 M3 86 23743.55 M3 89 25381.97 M3 92 26519.75 M3 95 26354.10

64409.06 70489.99 75100.23 79836.45 79126.64
M4 83 21385.29 M4 86 23254.29 M4 89 25386.43 M4 92 26382.97 M4 95 26220.37
M5 83 21689.72 M5 86 23544.85 M5 89 25186.00 M5 92 26210.13 M5 95 26224.09
M6 83 21784.81 M6 86 23446.60 M6 89 25533.21 M6 92 26267.09 M6 95 26516.54

64859.83 70245.74 76105.64 78860.19 78961.00
M7 83 21713.98 M7 86 23467.64 M7 89 25667.20 M7 92 26001.89 M7 95 26283.06
M8 83 21681.48 M8 86 23499.52 M8 89 25378.94 M8 92 26293.35 M8 95 26333.46
M9 83 22044.53 M9 86 23614.40 M9 89 25847.39 M9 92 25957.61 M9 95 26425.39

65439.99 70581.57 76893.53 78252.86 79041.90
M10 83 21981.35 M10 86 23652.42 M10 89 25529.57 M10 92 26116.96 M10 95 26088.01
M11 83 22055.13 M11 86 23764.32 M11 89 25970.32 M11 92 25782.27 M11 95 26460.65
M12 83 21890.95 M12 86 23549.15 M12 89 26289.12 M12 92 25643.24 M12 95 26582.78

65927.43 70965.89 77789.01 77542.47 79131.45

1 Quarterly values are in italic.
2 in Mio CHF.

Table 4 - Interpolated GDP1,2


